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Chapter 1

Introduction

The origin of the theory of vertex operator algebras comes from Borcherds’” wonderful
insight [Bol] that the moonshine module V% which Frenkel, Lepowsky and Muerman
constructed in [FLM] to solve the moonshine conjecture on the Monster sporadic finite
simple group M has a natural structure of a vertex algebra which he devised. After the
positive solution of the moonshine conjecture by Borcherds [Bo2|, a movement to study
the Monster as the full automorphism group of the moonshine vertex operator algebra
was established.

Let us explain the FLM construction of the moonshine vertex operator algebra briefly.
The moonshine vertex operator algebra V¥ is constructed as the Zy-twisted orbifold con-
struction of the lattice VOA V), associated to the Leech lattice A. Roughly speaking, we
may understand it as follows. We can define an involution 6 on V, which comes from the
(—1)-isometry on A. Then we take the f-invariants V' of Vi, which is again a simple
vertex operator algebra. It is shown in [FLM] that there is a f-twisted representation V
of V. The involution 6 also acts on V{. We take a fixed point submodule (V)" of V.
Then we define the moonshine vertex operator algebra by V*#:= V" @ (VI)*. In [FLM],
Frenkel et. al. showed that V% has a structure of a simple vertex operator algebra with the
g-character .J(7) and that the automorphism group Aut(V?) is isomorphic to the Monster
by using Griess’ result in [G] (see also [ATLAS| [C] [Ti]). By the construction, V* has a
natural Zs,-symmetry, which is known to be the 2B-involution of the Monster. It is shown
in [H3] that both V) and V¥ are Zs-graded simple current extensions of the Zy-orbifold
V" of Vi, and in this view point, the proof of existence of a structure of a vertex operator
algebra on V% was simplified by Huang [H3].

After [FLM], Miyamoto showed quite another construction of V% In [DMZ], Dong,
Mason and Zhu discovered an important fact that there is an orthogonal decomposition of
the Virasoro vector of V¥ into 48 conformal vectors with central charge 1/2. This implies
an existence of the unitary Virasoro frame L(1/2,0)®%® in V# and we can study V% as a

1



2 CHAPTER 1. INTRODUCTION

module for the frame L(1/2,0)®%, where L(c,h) denotes the irreducible highest weight
module for the Virasoro algebra with central charge ¢ and highest weight h. Motivated
by this fact, Miyamoto builded a theory of code vertex operator algebras in [M2] [M3]
[M4] and succeeded to reconstruct the moonshine vertex operator algebra started from
the Virasoro frame L(1/2,0)®8 in [M5]. In his construction, we have to perform simple
current extensions in two steps. First, we construct a code vertex operator algebra as
a simple current extension of L(1/2,0)®%8 and then we construct the moonshine vertex

operator algebra as a simple current extension of the code VOA.

The Miyamoto’s construction has an advantage that we can explicitly define many
2A-involutions of the Monster by using the representation theory of the unitary Virasoro
vertex operator algebra L(1/2,0). In [M1], Miyamoto showed that the Zs-symmetry of
the fusion algebra for L(1/2,0) gives rise to an involutive automorphism of any vertex
operator algebra which contains L(1/2,0) as a subalgebra. This involution is often called
the Miyamoto involution. 1t is shown in [C] and [M1] that the Miyamoto involutions on
the moonshine vertex operator algebra belong to the 2A-conjugacy of the Monster and
that there is a one-to-one correspondence between the set of conformal vectors in V? with
central charge 1/2 and the set of 2A-involutions of the Monster. After [M1], a method
to define automorphisms of vertex operator algebras by using symmetries in the fusion
algebras for the Virasoro vertex operator algebras and their simple current extensions was
developed by many mathematicians (cf. [KMY] [M7] [M8] [LLY] [SY]). In particular, C.H.
Lam, H. Yamada and the author has recently obtained an important achievement on the
Miyamoto involutions in [LYY]. In [LYY], they also use some simple current extensions

of vertex operator algebras to define automorphisms.

Now, we come to see that the simple current extensions of vertex operator algebras
have an incredible significance to construct new vertex operator algebras and study their
automorphisms. By this reason, the theory of simple current extensions is one of my
central subject. In this article the author would like to make a comprehensive compilation

on the theory of simple current extensions so far as I have ever obtained.

Let us review the definition of simple current extensions. Let V° be a simple vertex
operator algebra and D an abelian group. Assume that a direct sum Vp = @nepV'@ of
inequivalent irreducible V°%-modules {V | o € D} indexed by D forms a simple vertex
operator algebra. If the fusion rule V¢ x V# = Vo+P for V%-modules is satisfied, then the
extension Vp is called a D-graded simple current extension of V°. One of the main purpose
of this article is to determine the representation theory of Vp. To complete it, we have
to use the theory of fusion products. The theory of fusion products has been developed
by Huang [H1]-[H4] and Huang-Lepowsky [HL1]-[HL4] and it provides us a powerful tool

to study vertex operator algebras. The main tool we use in this paper is the associativity



for the fusion products. By Huang’s results, intertwining operators among simple current
modules have a nice property so that in the representation theory of a simple current
extensions with an abelian symmetry we can find certain twisted algebras associated to
pairs of the abelian group and its orbit spaces. The twisted algebras can be considered as
a deformation or a generalization of group rings and play a powerful role in our theory.
Using the twisted algebras, we can show that every module for a simple current extension
of a rational Cs-cofinite VOA of CFT-type is completely reducible. Furthermore, we
can parameterize irreducible modules for extensions by irreducible representations of the
twisted algebras (Theorem 4.4.7).

We also develop a method of induced modules for simple current extensions. We
show that every irreducible module of a rational Cs-cofinite vertex operator algebra of
CFT-type can be lifted to be a twisted module for a simple current extension with an
abelian symmetry (Theorem 4.5.3). This result concerns the following famous conjecture:
“For a simple rational vertex operator algebra V' and its finite automorphism group G,
the G-invariants V¢, called the G-orbifold of V|, is also a simple rational vertex operator
algebra. Moreover, every irreducible module for the G-orbifold V¢ is contained in a g-
twisted V-module for some g € G.” Our result is the converse of this conjecture in a
sense. Actually, we prove the following. Let VY be a simple rational VOA of CFT-type
and D a finite abelian group. Then a D-graded simple current extension Vp = @,epV'®
is o-regular for all 0 € D*. Here the term ”o-regular” means that every weak o-twisted
module is completely reducible (cf. [Y2]). Moreover, for an irreducible V°-module W, we
can attach the group representation y : D — Z/nZ such that the powers of z in a V-
intertwining operator of type Ve x (VP Ko W) — VetA R0 W are contained in y(«a) +Z
for all a, 3 € D. Finally we prove that W can be lifted to be an irreducible y-twisted
Vp-module, where ¥ is an element in D* defined as x(a) = e 27V=1x(®) for o € D.

In Miyamoto’s reconstruction of the moonshine vertex operator algebra, sometimes
we have to extend a D-graded simple current extension Vp of V? to an E-graded simple
current extension Vg where E contains D as a subgroup. In this paper we present a
method to construct the above extension in a general fashion in Theorem 4.6.1. We
also present a lifting property of intertwining operators in Theorem 4.4.9/ which describes
fusion rules for Vp-modules in terms of that of V%modules. By this theorem, we can

compute many fusion rules for the extensions.

Another main purpose of this article is to give applications of the theory of simple
current extensions to the moonshine vertex operator algebra and the Monster. In Section
6 we recall FLM’s construction of the moonshine module and introduce Huang’s idea of
the existence of a vertex operator algebra structure on the moonshine module in which
he used some results on simple current extensions. In Section 7 we recall the Miyamoto’s
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construction of the moonshine vertex operator algebra and we present a brief refinement
of his construction based on our results on simple current extensions. It is worth to
remark that by our refinement we can construct a vertex operator algebra which contains
a Virasoro frame L(1/2,0)®™ for arbitrary length n as long as Hypothesis I in Section
7 is satisfied, while Miyamoto’s original construction has a restriction on length n to be
divisible by 8.

In Section 8 we give some new results on the moonshine vertex operator algebra.
Let e € V% be a conformal vector with central charge 1/2 and 7, € Aut(V%) ~ M the
corresponding Miyamoto involution. Then it is known that Cyv#)(7e) is isomorphic to
the 2-fold cover (7.) - B of the baby monster sporadic finite simple group B (cf. [ATLAS]).
On the other hand, since the subalgebra Vir(e) generated by e is isomorphic to the unitary
Virasoro vertex operator algebra L(1/2,0), which has exactly three irreducible module
L(1/2,0), L(1/2,1/2) and L(1/2,1/16), we have the following decomposition of V%:

Vi= @ L(1/2,h) @ Homyie (L(1/2,h), V7).
h=0,1/2,1/16

The space T7(h) := Homviye)(L(1/2, k), V¥), h € {0,1/2,1/16}, coincides with the space
of highest weight vectors for Vir(e) with highest weight h, and by the commutant construc-
tion, T#(0) is a subalgebra of V# which commutes with Vir(e) and T#(h), h = 0,1/2,1/16,
are module for T#(0). Therefore, the group Caut(ve)(7e) naturally acts on the spaces
T%(h). On the other hand, it is well-known that L(1/2,0) & L(1/2,1/2) forms a simple
vertex operator superalgebra. Therefore, it is natural for us to expect that the space
VB := T#(0) @ T5(1/2) also forms a simple vertex operator superalgebra. The study of
VB was first begun by Hohn in [H61] and he proved in [H62| that the automorphism
group of VB is exactly isomorphic to 2 x B. In Section 8 we give a quite different proof
of existence of a structure of a vertex operator superalgebra on VB and the isomorphism
Aut(VB) ~ 2 x B by showing that VB is a Z,-graded simple current extension of 77(0).
Moreover, we prove that VBr := T#(1/16) is an irreducible Zy-twisted VB-module and that
the irreducible T¢(0)-modules are exactly given by T7(0), T%(1/2) and T7(1/16). This re-
sult gives an interesting consequence that the 2A-twisted orbifold construction applied
to V¥ yields V¥ itself again, whereas the 2B-twisted orbifold construction applied to V*
yields Vi as in [FLM].

In Section 8 we also review the 3A-algebra for the Monster in [SY]. This algebra was
first studied by Miyamoto |[M8] and Sakuma and the author studied it deeply in [SY].
After [SY], Lam, Yamada and the author greatly generalized Miyamoto’s idea in [M8] and
made a comprehensive development of the study of the McKay’s observations on the 2A-
conjugacy class of the Monster in [LYY]. In [LYY], many algebras related to the Monster
were founded and studied. The 3A-algebra is a one of them and its fusion algebra has



a natural Zz-symmetry which is known to define the 3A-triality of the Monster. Since
the 3A-algebra is a Zs-graded simple current extension of the unitary Virasoro vertex
operator algebras, we can study it by using a theory of simple current extensions we have
developed. It is an interesting result that some coefficients of fusion rules for modules for
the 3A-algebra is 6, whereas there are few examples of fusion rules whose coefficients are

greater than 1.
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Chapter 2

Basic Definitions

In this section we recall some basic definitions on vertex operator algebras. Sometimes
it is convenient to consider not only vertex operator algebras but also vertex operator
superalgebras, the superalgebra version of vertex operator algebra, together. So we also
include the notion of vertex operator superalgebras. We shall work in an algebraic setting
over the complex number field C, however, all the results are valid over any algebraic
field of characteristic 0. The set of non-negative integers will be denoted by N; i.e.,
N ={0,1,2,...}. The symbols z, zy, 21, ... will designate commuting formal variables.

2.1 Formal calculus

Here we discuss formal power series and fix the necessary notations. All the results are
either elementary or in [FLM] and [FHL].

For a vector space V', we set

Vz] = {2 ,en 2" | v, €V, all but finitely many v, =0},

Vlz, Zﬁl] = {ZnEZ v, 2" | v, € V, all but finitely many v, =0},

V[[=]] = {Xnentn2" |a €V}

V((2)) = {2 ez | vy €V, v, = 0 for sufficiently small n },

VHZ’ Zﬁl] = {Znez V2" | v, €V }>

V{z} = {2 et v €V ],

V{{z}} = {3, |0, €V, "r€C3INEN st v,; =0for ¥i > N}.

and we shall also use analogous notation for several variables.

For r € C, we define the binomial expansion by
N\ . r re(r—=1)---(r—i+1)
r = Tt h = .
(21 + 22) ;EN (z)zl 25,  where (2) 7

7




8 CHAPTER 2. BASIC DEFINITIONS

Note that (21 4+ 22)" # (22 + 21)" unless r € N.
For f(z) € V[z], we define its formal exponential series by

z S 1 n
el ::Z%Ef(z) .

Then we have the following formal version of Taylor’s theorem:
it - 57 = (24 z)" forreC. (2.1.1)

We introduce a basic generating function, the formal d-function at z = 1:
§(z) = Z 2",
nez

The fundamental property of the d-function is z"d(z) = §(z) for n € Z. We usually use
the d-function in the following way:

22_16 (Zl _ ZO) (Zl — ZO) = 21_15 (Zz * ZO) (Z2 + z0> ,  wherer € C,
29 29 21 z1

56 (Zl — 22) — 256 (—_22 i Zl) = 26 (zl - ZO) = 2% (ZQ - ZO) .
20 20 29 21

The following formal residue notation will be useful:

Res, E v 2" = v .

nez
Formal residue enjoys some property of contour integration. We have

(i) Integration by parts. For f(z) € C((z)) and g(z) € V((2)),

Reszf(z)dizg(z) = —Reszdiif(z) -g(2).

(ii) Formula for change of variable. For g(z) = > - yv.2" € V((2)) and f(z) =
> ns1 @n2" € C[[2]] with a; # 0, we have the following formula for this change of variable:

Res.g(z) = Reszlgu(zl))d%f(zn.

2.2 Vertex operator algebras

Definition 2.2.1. A vertex superalgebra is a quadruple (V,Y (-, 2),1,0) where V = V' &
V1is a Zs-graded C-vector space, Y (-, z) is a linear map called vertez operator map from
V ®cV to V((2)), where z is a formal variable, 1is a specified element of V' called vacuum
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vector and O is a parity preserving endomorphism of V' such that if we set Y(a,z) =
- oa(n)z*"*1 for a € V, which is called the vertexr operator of a, then the following

conditions hold:

(1) Y'(1, 2) = idy;

(ii) Y(a, 2)1 € V[[z]] and Y(a,0)1 = a(-1y1 = a for any a € V;

(iii) [0,Y (a,2)] = Y (0a, z) = diiY(a, z) for any a € V;

(iv) For a € Vi and b € V7, Y (a, 2)b € V¥ ((2)), where i, ] € Zy = Z/2Z;
(v) The following Jacobi identity holds for any Zs-homogeneous a,b,v € V:

—2z9 + 21

20

) <z1 — Z2> Y(a,2)Y (b, zp)v — (—1)5@¥ 21§ <

20

> Y (b, 2)Y (a, 21)v

zZ2

— 22_15 (Zl _ ZO) Y (Y(a, 29)b, z2)v,

where € : VOU V! — Zy = Z/27 is a parity function such that (a,b) = 1+ Z if and only
if a,b € V%

We usually denote (V,Y(+, 2),1,9) simply by V. In the case of V! =0, V is called a
verter algebra. If a vertex superalgebra V' has a %Z—graded decomposition V = @, ¢ 1 A
such that V° = @,c, VNV, VI = @nezvlﬂVnJr% and a(,) Vs C Vipgs—n—1 for any a € V,,,
then V is said to be a graded vertex superalgebra. For a graded vertex superalgebra V|
we define the weight of a homogeneous element a € V,,, by wt(a) := m. This completes
the definition.

Remark 2.2.2. For a vertex superalgebra (V.Y (-, 2), 1,0), the underlying vector space V'

is sometimes called the Fock space of the structure.

The following are consequences of axioms (cf. [FLM] [FHL] [Lil]).
1° Skew-symmetry: Y (a, 2)b = (—1)5@Y)e*Y (b, —z)a. In particular, Y (a,2)1 = e*a.
2° Commutativity: Let N be an integer such that a,)b =0 for n > N. Then

(21 — 22)NY (a, 20)Y (b, 22) = (—1)5* 2y — )NV (b, )Y (a, ) on V. (2.2.1)

3° Associativity: Let N be a positive integer such that Y (a, z)v involves only positive

powers of z. Then
(20 4+ 20)NY (Y (a, 20)b, 20)v = (20 + 22)VY (a, 20 + 22)Y (b, 22)v. (2.2.2)

Among the above conditions, the most important one is the commutativity as which

characterizes a concept of vertex superalgebra. Here we present the following fact.
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Proposition 2.2.3. (/Lil, Proposition 2.2.4]) In the definition of vertex superalgebra,
the Jacobi identity can be equivalently replaced by the commutativity (2.2.1).

Proof: Here we give a proof of the above proposition at the classical level as in
Remark 2.2.5 of [Lil]. Let A be any algebra with a right identity 41 and denote by
ad(a) the left multiplication by an element a € A. Suppose that the commutativity
ad(a)ad(b) = ad(b)ad(a) holds for any a,b € A. Then a(bc) = b(ac) for any a,b,c €
A. Setting ¢ = 41, we obtain the commutativity ab = ba. Furthermore, we obtain
the associativity a(bc) = a(cb) = c(ab) = (ab)c for any a,b,c € A. Therefore A is a
commutative associative algebra. The proof of Proposition 2.2.4 of [Lil] is exactly an
analogue of the argument above. 1

Later, we will present another approach to the definition of vertex superalgebras using
a theory of local systems [Lil].

Definition 2.2.4. A wvertez operator superalgebra (V)Y (-, z), l,w) is a graded vertex su-
peralgebra (V.Y (-, 2), 1,0) with an additional element w € V called the Virasoro vector
of V such that

(vi) V admits a representation of the Virasoro algebra:

m3—m

[L(m), L(n)] = (m —n)L(m +n) + 5m+n,oTC
for m,n € Z, where we set Y(w,z) = >, ., L(n)z"""% and ¢ € C is called the central

charge of w;
(vii) L(—1) =, i.e., Y(L(—1)a, 2) = [L(—1),Y (a, 2)] = LY (a, z) for any a € V;

(viii) The 3Z-graded decomposition V = &, 1V coincides with L(0)-eigenspace decom-
position, that is, L(0)|y, = n -idy,, and also we have dim¢V,, < oo and V,, = 0 for
sufficiently small n. This completes the definition.

A vertex operator superalgebra V = V%@ V! with V! = 0 is called a vertez operator
algebra and we call it a VOA for short. Similarly, a vertex operator superalgebra is shortly
referred to as a super VOA or an SVOA.

In this article, we mainly treat VOAs of CFT-type:

Definition 2.2.5. An SVOA V is said to be of CFT-type* if it has a grade decomposition
V = ®,c15Vn such that Vp = Cland V,, =0 for n < 0. A VOA of CFT-type is an SVOA
of CFT-type with odd part component V! = 0.

* CFT=Conformal Field Theory, as this kind of condition is always assumed in the conformal field
theory.
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2.3 Modules for vertex operator algebras

Definition 2.3.1. Let (V, Yy (-, 2), 1, 0y) be a vertex superalgebra. A V-module is a triple
(M, Yy (-, 2),0p) where M = M°@® M" is a Zo-grades vector space and Yy(, 2) is a linear
map V ®&c M — M((z)) and 0y is a Zy-homogeneous endomorphism of M such that if
we set Yar(a,2) = 3, amyz "', where a(,y € End(M), then the following conditions
hold:

(i) For a € V' and v € M7, Yy(a, z)v € M ((2)), where i, j € Zs;
(i) Yar(Ova, z) = [Om, Yar(a, 2)] = £Yu(a, 2);
(

iv) The following Jacobi identity holds for any Z,-homogeneous a,b € V and v € M:

) (Zl Z_ 22) Yar(a, 21)Yar (b, z0)v — (—1)F@DY; (b, 2)Yas (a, 21 )
0

=21 (21 — Zo) Y (Yv(a, 20)b, 22)v.

<2
We often denote (M, Yy (+, 2),0y) simply by M. This completes the definition.

Definition 2.3.2. Let (V. Yy (-, 2), 1,w) be a vertex operator superalgebra. A V-module
is a module (M, Yy (-, z),0n) of a vertex superalgebra (V,Yy (-, 2), 1, L(—1)) such that
Om = L(—1) = Res,Yy(w,2). A V-module M is said to be iN-graded if there is a 1N-
grading M = @RG%ZM(n) such that M? = @,enM° N M (n), M' = GpenM* N M(n + 1)
and a( M (s) C M (s + wt(a) —n — 1) for any a € V. A IN-graded V-module M is said
to be a strong module if an operator L(0) = Res.zY (w, z) acts on M semisimply and each
eigenspace is of finite dimension. For a strong V-module M, we often use M, to denote
the eigen subspace {v € M | L(0)v = sv} for s € C. This completes the definition.

Remark 2.3.3. In the definition of modules, we do not have to assume the L(—1)-derivation
property Yy (L(—1)a, z) = [L(—1), Ya(a, 2)] = 0.Yum(a, z) if V is an SVOA, as will follow
from the Jacobi identity on M.

Remark 2.3.4. Tt will be explained later that to give a module M for an SVOA V is
equivalent to give a vertex superalgebra homomorphism from V' to a local system on M.
If this homomorphism preserves SVOA gradings, then a module M becomes a %N—graded

module. Namely, even if we consider a vertex operator algebra, its representation theory
is studied in the level of vertex algebras.

For an N-graded V-module M = @,>0M (n) with M(0) # 0, the subspace M(0) is
often called the top level of M, and for a strong V-module M = ®,,>0M, 4, with top level
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My, we call its weight h top weight of M. For a strong module M with top weight h, we

often consider its ¢-dimension or g-character given as follows:

char(q) == trpqt® ZdlmMn+hq

n=0
The following are consequences of definition (cf. [FLM] [FHL] [Lil]).

1° Commutativity: Let a,b € V and let N be an integer such that 2"Yy (a, z)b involves

only positive powers of z. Then

(21 — 22)VYor(a, 21)Yar (b, 2) = (—1)5(“’b)YM(b, 29)Ya(a,z1) on M. (2.3.1)
2° Associativity: Let a,b € V and v € M. Then for sufficiently N we have

(20 + 22)VYr(a, 20 + 22)Yar(b, 20)v = (22 + 20) Yar (Yo (a, 20)b, 22)0. (2.3.2)
It is well-known that the above two conditions are equivalent to the Jacobi identity.

Proposition 2.3.5. ([Lil, Proposition 2.53.3]) Let V be a vertex superalgebra. Then the
Jacobi identity on a module is equivalently replaced by the commutativity (2.3.1), the
associativity (2.2.2) and the L(—1)-derivation property.

2.4 Intertwining operators and fusion rules

Definition 2.4.1. Let V be a vertex operator algebra and let M1 M? and M? be strong
V-modules with L(0)-weight decompositions M* = ®nenM; ., , i = 1,2,3, where h; € C
and M}, ={ve M"| L(0)v = (n+h;)v}. A V-intertwining operator of type M' x M? —
M3 is a linear map I(, z) : M ® M? — M?3{{z}} satisfying the following conditions:

(i) For any u! € M*! and u? € M?, I(ut, 2)u® € M3((z))z~M—haths,
(ii) L(—1)-derivation: I(L(—1)u',z2) = d.I(u', 2);
(iii) The following Jacobi identity holds for any a € V, u! € M' and u* € M*:

—Z9 -+ 1
20

2t (Zl ; 22) Yags(a, z0) I (ut, 20)u? — 2510 (

) I(u', 29) Yo (a, 21)u?
0

zZ9

=210 < ZO) I(Yan(a, zo)u', 2)u?.

The space of V-intertwining operators of type M' x M? — M? is denoted by (1 MQ)V

or simply by ( Al M2) and its dimension dimg ( le\4 MQ) is called the fusion rule. This

completes the definition.
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Remark 2.4.2. Let I(-, z) be as above and let u € M. If we write I(u, 2) = 3, cc umz "}
with u¢y € Hom(M?, M?), then it follows from definition that each coefficient operator is

homogeneous such that u, M2 C M? wt(u)—r—1-

The name “V-intertwining operator” comes from the following fact.

VMj\Zl) and Homy (M*, M?).

=0 unless M' ~ M?.

Lemma 2.4.3. There is a canonical isomorphism between (

Therefore, if both M* and M? are irreducible, then (V Ml)

Proof: Let I(-,2) € (VMA;). Then by the L(—1)-derivation we have 9.1(1,z2) =
I(L(-1)1,z) = 0. Thus I(1,2) is in Home(M?', M?). Moreover, since [a(), I(1,2)] =
> is0 2" I(a@l, 2) = 0 for any a € V, I(1, 2) defines an element in Homy (M', M?). If

I(1,2z) =0, then
I(a,z) = I(a-11,2) = Res,{(w — 2) " Yaz(a,w)I(1, 2) — (—2 4+ w) " I(1,2) Yy (a, w)}

implies I(-,z) = 0. Thus we obtain a linear injection (VM]\241) > I(-,2) — I(1,2)
Homy (M*, M?). Conversely, for v € Homy (M, M?), define Jy(-, 2) : Vx M' — M2(( )
by Jy(a,z) = Yye(a, 2)Y = ¢YYyn(a, z). Then one can easily check that Jy(a, z) € (

and Jy(1,2) = 1. Thus ( is isomorphic to Homy (M?!, M?).

M

VvV M1

-\./\_/

Vare)

Clearly, for every V-module M, the module vertex operator Yy, (-, z) is a V-intertwining
operator of type V x M — M. Since the definition of intertwining operators are a
generalization of that of module vertex operator maps, intertwining operators also enjoy
the following properties.

Proposition 2.4.4. Let I(-,z) be a V-intertwining operator of type M' x M? — M?.
Then the Jacobi identity for an intertwining operator is equivalent to the following two

properties:

(i) Commutativity:
(21 — 22) Yags(a, 21) 1 (u, 22) = (21 — 22) VI (u, 22)Yar2(a, 1) for N > 0;
(ii) Associativity:

(20 + ZQ)NYMa(a, 20 + 22) 1 (u, 22) = (20 + ZO)NI(YMI(CZ, 20)u, z2)  for N > 0.

2.5 Automorphisms and twisted theory

In the theory of vertex operator algebras, automorphisms play an important role.
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Definition 2.5.1. An automorphism o of a vertex operator algebra V is a linear auto-
morphism on V' such that it fixes both the vacuum vector 1 and the Virasoro vector w
and preserves the vertex operator mapping oY (a, 2)b = Y (oa, z)ob for any a,b € V. The
group of automorphisms of V' is denoted by Aut(V').

For a subgroup G of Aut(V), we can obtain the G-fixed point subalgebra V¢ := {a €
V | oa = a for any o € G}, called the G-orbifold of V. It is an important problem to
classify all irreducible VV¥-modules in the orbifold conformal field theory, and this problem
leads us to the notion of twisted modules. Let o € Aut(V') be of finite order |o|. Then
we obtain the eigenspace decomposition

V=V'e V'@ oV where V' :={a €V |oa=e""/l.q}.
Then o-twisted V-modules are defined as follows:

Definition 2.5.2. A o-twisted V-module is a couple (M, Yy (+, 2)) of a vector space M
and a vertex operator mapping Y (-, 2) : V@ M — M((z'/1°)) such that

(1) Yar(1, 2) = idy;

(ii) Ya(a, 2) has a form Y (a,2) = >, oy a(nﬂ%‘)Z*”*l”/“" for a € V", where Uy z) €
End(M);

(iii) The following twisted Jacobi identity holds for any a € V" and b € V:

210 <21 z_ Zz) Yar(a, 21)Yar (b, z0) — 250 (—_222+ Zl) Yar(b, 20)Ya(a, 21)
0 0
) <z1 — ZO) (21 — zo) Yar (Yo (. 20)b, 22) on M.
Z9 Z9

A FhZ—gmded o-twisted V-module is a o-twisted V-module with a Z/|o|Z-grading M =
M@ M'@®--- M9I=1 such that V- M7 € M and each M® is an N-graded V°-module.
A strong o-twisted V-module is a ﬁZ—graded o-twisted V-module which is also a strong
module as a V°-module. This completes the definition.

If we consider a trivial automorphism idy,, then we find that an idy-twisted V-module
is exactly a V-module. Therefore, sometimes a V-module is referred to as an untwisted
module. As in the case of untwisted modules, we have the following (cf. see [Li2]).

Proposition 2.5.3. Let M be a o-twisted V-module and let a € V", b€V and v € M.
Then the twisted Jacobi identity on M is equivalently replaced by the L(—1)-derivation
property, the commutativity

(21 — 22)VYar(a, 21)Yar(b, 22) = (21 — 22)V Yar (b, 22)Yas(a, 21)
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and the associativity
(20 + 22) M1V os (0, 20 + 22) Yo (b, 22)0 = (22 + 20) V11V (Y (0, 20)b, 20) 0

with sufficiently large N € N.

2.6 Examples of VOAs

In this section we present some examples of vertex operator algebras and superalgebras.
Here we only give constructions of underlying vector spaces (Fock spaces) and definitions
of vertex operator maps on them, and the proofs of VOA structures are omitted; as the
most of them will directly follow from a theory of local system given in Section 3.1.

2.6.1 Free bosonic VOA

Let b be a finite dimensional vector space with a non-degenerate symmetric bilinear form
(-,). Viewing b as an abelian Lie algebra with invariant bilinear form, we construct its
affinization b := C[t,t '] ® h & Cc whose Lie bracket is defined as

[t @ a, t" @ b] := pynola,b)e fora,beb, [h,c=0.

Set ﬁi ‘= Bim>oCt" ® b and 60 =1 h®Cc. Then we have a triangular decomposition
6 = 6+ S 60 D 6_. We have a subalgebra h & Cc @ b~ and this is often called the
Heisenberg algebra. We often identify h with 1®bh C 60. Let £ € C and o € h*. Since
the bilinear form on § is non-degenerate, we can identify h with its dual h*. Let Ce® be a
one-dimensional representation of h° defined as h-e® = (a, hye* for h € h and c-e* = ke®.
With trivial action of hT, we can extend Ce® to be a (h° + hT)-module. Then the induced

module

- <(h) a _ " a
My(k, o) := Indu(60+6+)(Ce = u(h)u(f;gf;ﬂ Ce

is called the Verma module or the highest weight module with level k and highest weight
«. Here and further (X) denotes the universal enveloping algebra for a Lie algebra X.
We consider the case k # 0. In this case we see that My(k,a) >~ My(1,«) by changing
(-,-) by (-,-)/k. Tt is easy to prove that My(1, ) is an irreducible h-module.

Let {h1,. .., hamp} be a linear basis of h and {h',--- , h4™b} its dual basis. We show
that M;y(1,0) has a structure of a simple VOA and My(1,«) are irreducible Mj(1,0)-
modules. For a € b, let us write a(m) = t™ ®a and set a(z) = > _,a(n)z"""1. Note

that we have a relation

neZ

(21 — 20)%a(21)b(22) — (=22 + 21)*b(22)a(z) =0
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for any a,b € b, and My(k, ) has a linear basis
{hil(—nl) cee hir(—nr)ea ’ Ny 2>ng 2>+ 2Ny > 07 re N}

Using the above basis, we define a vertex operator on My (1, o) for each element in My (1,0).

First, we set Ya(1,0)(€”, 2) := idpr(1,0), and inductively we define

YMb(l,a) (a(m)x, Z)

= Res;o{ (20 — 2)™a(20) Y, (1,0) (75 2) — (=2 + 20)" Y, (1,0 (2, 2)a(20) }
for z € My(1,0). Put 1= ¢€° and

dim b

w = % ; hi(=1)hy(—1)e.

Then (My(1,0), Yar,1,0)(+2), 1,w) has a structure of a simple VOA with central charge
dimb, and (My(1, @), Yas, (1,0)(-; 2)) are inequivalent irreducible My (1,0)-modules for all
a € h. A VOA My(1,0) is called the free bosonic VOA and one of the simplest exam-
ples of VOAs. It is not difficult to check that L(0) acts on h; (—nq)---h; (—n,)e* as a
scalar nq + -+ + n, + (o, ) /2. Thus we have a weight space decomposition My(1, ) =
Bn>0Mpy(1, &)ni(a,a)/2 With a g-character

—dimb/24 a,a)/2 —dim#b
)

q chagy 1.0y (@) = 7% 1(q)

where 7(g) denotes the Dedekind eta function ¢"/* T . (1 — ¢").
Since a free bosonic VOA contains a Heisenberg subalgebra, its representation theory

is well-known:

Theorem 2.6.1. (JFLM, Theorem 1.7.2 and 1.7.3]) Every irreducible N-graded My(1,0)-
module is isomorphic to My(1, ) for some o € b, and an N-graded My(1,0)-module W

has a structure
W~ My(1,0)®@Qu  with Qu :={ve W |§" v=0}
A module W is completely reducible if and only if 60 acts on W semisimply.

Later, we will show that all modules My (1, ) are deformations of the 0-sector Mg(1,0)
by using semisimple primary vectors, and based on this fact we can also prove the fusion
rules My (1, a) x My(1, 3) = My(1,a+ ) for any o, 3 € b.
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2.6.2 Lattice VOA

Let L be an integral lattice with a symmetric positive definite bilinear form (-,-). Then
by using its complexification h = C ®z L we can construct a free bosonic VOA M(1,0)
and its irreducible modules My(1, ), a € L. We can define a VOA-structure on V;, :=
BacrMy(1, ). Before we define the vertex operator map on it, we have to construct a
central extension of an abelian group L. It is shown in [FLM] that there is a unique

central extension up to equivalence
1—)Zz:</ﬁ]|l{,2:1>—)i:{/{/iea|056L7 220,1}—>L—>1

such that e - ef = gl@AHa BB . co where e € L is a section of @ € L. Tt is
convenient to introduce a notation C{L} := C[L]/(k+1)C[L] ~ Spanc{e® | o € L}. Now
we identify the highest weight vector e* € My(1, &) with an element e* € C{L} for each
o€ L. Let {o, ..., ank(r)} be a Z-basis of L and {a',... , o k()1 its dual basis in b.

Then V;, has the following linear basis
{ail(—nl)aiQ(—ng) T Olir(—nr) ®€ﬁ | ng>mng 2> 2nNp > 07 re N7 ﬁ S L}

because V, is isomorphic to My(1,0) ® C{L} as a vector space. For o € h, we define

o0

a(En
E*(a,z) == exp (Z (:I:n )ZJF”) :

n=1

Then we define the vertex operator map Yy, (-, 2) on Vj, o~ My(1,0) ® C{L} by
Yy, (e%,2) := E=(—=8,2)E* (=3, 2)(1®ad e?) 2P0,
for 3 € L, where ad e” is a left multiplication of ¢’ on C{L}. Note that we have a relation
(21—22) 7P Yy, (e, 21) Yo, (€°, 20) — (—1)(@ BBy 4 2) @AYy, (€8, 20) Y3, (€%, 21) = 0
for a,, # € L. Then inductively we define
Yy, (a(m)z, z) := Res,, {(z0 — 2)"a(z0)Yv, (z,2) — (—2 + 20)" Yy, (x, 2)a(z) }

for « € b and = € V, where a(z) = Y, _, a(n)z~""!. Then it is shown in [FLM] that
the quadruple (V, Yy, (-, 2), 1, w), where 1 and w are the vacuum vector and the Virasoro
vector of M(1,0) C Vi, respectively, has a structure of a simple SVOA, and if (L, (-,))
is an even lattice, then V7, is a simple VOA.

All irreducible V-modules are classified in [D1] and are in one-to-one correspondence
with the quotient space L°/L, where L° := {v € Q®z L | (v, L) € Z} is the dual lattice

of L. More precisely, for a coset A + L € L°/L, we can find a V-module structure on

Viia = GacrxMy(1, o).
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Later we will prove this fact by using Li’s method. The g-character of Vi, is given by

qfrank(L)/24ChVL+>\ (q> _ Z q(a,a)/Q . 7]<q)7rank(L) _ 9L+/\(q>/n<q)rank([/),
aEL+X

where 0,11(q) = > cr0 @“/? is a theta series on L + A.

2.6.3 Affine VOA

Let g be a finite dimensional simple Lie algebra over C with an invariant bilinear form
(-,+), and let h be a Cartan subalgebra of g. We normalize (-,-) such that (6,6) = 2 for
the highest root 6. Let g = C[t,t7!]® g @ Cc be its affinization, where its Lie bracket is

given as follows:
[t" ®a,t" @b :=t""" ®|a,b] + dminola,b)c fora,beg, [g . =0.

Set g% := @poCt™ @ g and g° := 1 ® g ® Ce. We identify g with 1@ g C g°. Let A € bh*
and M (A) a highest weight g-module with highest weight A. By letting g% act on M(\)
trivially and ¢ act on it as a scalar £ € C, we may view M (\) as a (§°+ g*)-module. Then

we obtain a Verma module or a highest weight module for g of level ¢ as follows:

M(€,\) = Indy®) . M(\) =4(3) @ M(\).

9
o+5T) 4G +5")

We show that there is a natural VOA structure on My(¢,0) if ¢ # hY, where h" is the
dual Coxeter number of g. Let {a1,...,aqmq} be a linear basis of g and {a',...,a%™9}
its dual basis. Let M(0) = Cv°. For a € g we denote " ® a by a(n), and define a(z) =
> nez a(n)z~""1. Note that we have a relation

(z1 — 22)2a(z1)b(z2) — (=20 + 21)2b(z2)a(z1) =0
for a,b € g, and My(¢,0) has a following linear basis:
{a;y(—nq)--- air(—n,«)vo |ny > >n, >0}

We define a vertex operator map Y'(+,z) on M,(¢,0) as follows. First, we set Y (v",2) =

idaz,(e,0) and inductively we define
Y(a(n)z, z) = Res, {(20 — 2)"a(20)Y (2, 2) — (—2 + 20)"Y (x, z)a(z0) }

fora € g, n € Z and x € M,(¢,0). Put 1= 1" and

dim g

W= — Z a'(=1)a;(=1)v° € My(¢,0).

"Then the Killing form on g is given by 2h"(-,-), where h" is the dual Coxeter number of g.
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Then it is shown in [FZ] that the quadruple (My(¢,0),Y (-, 2), 1, w) satisfies all the axioms
for a vertex operator algebra with central charge /dimg/(¢ + h"). Moreover, if ¢ # 0,
then for any ideal I of My(¢,0) the quotient g-module My(¢,0)/I also becomes a VOA.
In particular, the unique irreducible quotient Lg4(¢,0) has a structure of a simple VOA.
This VOA is often called the affine VOA associated to a Lie algebra g.

By defining vertex operator map by a similar way, we can also verify that every highest
weight g-module My (¢, \), A € h*, becomes an My(¢, 0)-module. However, not all of them
become modules for the affine VOA Ly(¢,0) in general. For example, if ¢ is a positive
integer, then it is shown in [FZ] and [Lil] that only the integrable g-modules afford
Ly(¢,0)-module structures.

2.6.4 Virasoro VOA

Let Vir = @,czCL(n) @& Cc be the Virasoro algebra with the following defining relations:

m3 —m

[L(m), L(n)] = (m —n)L(m+n) + 5m+n,ch, [Vir,c] = 0.

Set Vir® := @,50CL(£n) and Vir’ := CL(0) @ Cc. Then we obtain a triangular decom-
position Vir = Vir" @ Vir’ @ Vir~ so that we can consider highest weight modules. Take
any ¢,h € C, and define a semisimple Vir’-module Cveny by L(0)ven = h - v and
CU(c,h) = €+ V(e,n)- By letting Virt act on Cue,py trivially, we may consider Cov. ) as a
(Vir® 4 Vir*)-module. Then a Verma module or a highest weight module of the Virasoro
algebra with central charge ¢ and highest weight h is defined as

L $U(Vir) o .
My (e, h) :== Indﬂ(wr%wﬁ)@v(qh) = 4(Vir) iJ.(VirgiVir'*') Cuien).-

By the famous PBW theorem, My;,(c, h) has a linear basis
{L(=n1) - L(=ng)vepy | na > - >ng >0, k € Z}.
One can easily check that
L(0) - L(—=nq) - L(=ng)ven = (m+ - +np + h) - L(=n1) - - - L(=ng)vien)

so that we have a g-character chpy,.(n) = ¢"/n(¢g). One can also verify that Myi(c, h)
affords a unique symmetric invariant bilinear form (-,-) up to linearity, where the term

“invariance” means

(L(n)a,b) = (a, L(—n)b) for any a,b € My (c,h) and n € Z.
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The kernel of the above bilinear form is a unique maximal ideal of My;.(c, h), and is often
denoted by J(c,h). Then the quotient Vir-module Lyi(c,h) := Myi(c,h)/J(c,h) is a
unique irreducible highest weight module with central charge ¢ and highest weight h.

Structures of Verma modules My, (¢, h) have been studied so well and it is important
to study singular vectors in My, (¢, h). A singular vector of My;, (e, h) is a vector w such
that L(n)w = 0 for all n > 0. By the commutator formula, a vector u € My (c, h) is
singular if and only if L(1)u = L(2)u = 0. We may assume that every singular vector is
homogeneous with respect to the action of L(0). It is obvious that every singular vector
u is contained in J(c, h) if u & Cv(.p). In particular, the irreducible quotient Lvi(c, h)
contains no singular vector but the highest weight vectors Covp).

Let us consider My, (c,0), a Verma module with highest weight 0. In this case we al-
ways have a singular vector L(—1)v(c,o) of weight 1 for every ¢ € C. By the PBW theorem,
we know that the subalgebra of My;.(c,0) generated over L(—1)v(.) is isomorphic to a
Verma module My (¢, 1). So we obtain a quotient module My (¢, 0)/Myi(c, 1). Denote
by 1 the image of vy in this quotient. Then we have a relation L(—1)1 = 0. Now let us
ez L(n)z7"2 of operators on My, (¢, 0)/Myi(c, 1).
By direct computation, we can show (z; — 22)*[w(21),w(22)] = 0. Then by a theory of

consider a generating series w(z) := Y

local systems, we can prove that My (c,0)/Myi (e, 1) has a unique vertex operator map
Y (-, z) such that 1 is the vacuum vector and w = L(—2)1 is the Virasoro vector such that
Y(L(—2)1,2) = w(z). The VOA (My;,(c,0)/Myi(c, 1), Y (+, 2), 1, w) is called the Virasoro
VOA.

The structure of the Virasoro VOAs are deeply related to the structure of Verma
modules, and the following fact is known (cf. [FF], see also [Ast]):

Proposition 2.6.2. (JFF]) For coprime integers p,q > 2, set c,q = 1 — 6(p — ¢)*/pq.
Then (1) J(c,0) is generated by the singular vector L(—=1)vo) if ¢ # Cpq; (i) J(Cpg,0)
is generated by two singular vector. One of them is L(—1)v( ). The other is denoted by
wy,q whose weight is (p — 1)(q — 1) and the monomial having mazimal length in w,, is

L(_Q)(p—l)(q—l)/%(c’o)_

By this fact, the Virasoro VOAs with central charge c,, have a special importance.
The irreducible quotient Lyi. (¢, 4,0) are simple VOAs and called the minimal series or
the BPZ series of the Virasoro VOAs. About this series, the following fact is known:

Theorem 2.6.3. ([Wan|) For coprime integers p,q > 2, set

o 2 . 2
e = (sp—rq)"—(P—q)° (2.6.1)

4pq

Then every irreducible Lyi:(cpq,0)-module is isomorphic to Lyi(cpq, W222) for some 1 <

r<p—1andl <s<q—1. Moreover, every Ly (cpq,0)-module is completely reducible.
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In this article, the case p = m+2 and ¢ = m+ 3, m = 0,1,2,..., are extremely
significant. Set ¢y := Cmiomis = 1 — 6/(m + 2)(m +3) and AW = h 243 for m € N,
1<r<m+1land1l <s < m+2 Then itis shown in [FQS] [GKO] [KR] that the
irreducible quotient L(c,y,, hg?)) affords a non-trivial unitary invariant bilinear form. So

L(cm,0), m =1,2,--- are called the unitary series of the Virasoro VOA.
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Chapter 3

Fundamental Topics

This chapter is devoted to present fundamental results on vertex operator algebras.

3.1 Simple VOAs

In this section we enjoy some properties of vertex operators. We will see that a simple
vertex operator algebra has an aspect of a commutative associative algebra or sometimes
a division ring.

Let (V,Y (-, 2), 1,w) be a vertex operator algebra. A V-module is said to be irreducible
if it has no non-trivial proper submodule. A VOA is said to be simple if it has no non-
trivial proper ideal, or equivalently, if the adjoint module is irreducible. We should note
that a left or a right ideal of a vertex operator algebra is also a two-sided ideal by the

skew-symmetry.
For a subset A of V' and that B of M, we define

A- B :=Spanc{amb|a€ A be B, neZ}.
The following simple lemma will be used frequently.

Lemma 3.1.1. Let M be an N-graded V-module. Let A', A? be subsets of V and B a
subset of M. Then A'-(A*-B) C (A'- A%)- B. In particular, V - v is a submodule of M
for each v e M.

Proof: Use the associativity (2.3.2). 1

For an L(0)-homogeneous a € V, we define o(a) := a(wt(a)-1) and extend linearly on
V. The operator o(a) is called a zero-mode of a and preserves every graded piece of an
N-graded module. As a corollary of Lemma 3.1.1, we have

Corollary 3.1.2. Let M = @,enM(n) be an irreducible N-graded V-module. Then
M (n) = Spanc{o(a)v | a € V'} for each 0 # v € M(n). In particular, M has a countable

dimension.

23
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The following lemma is a generalization of Schur’s lemma.

Lemma 3.1.3. Let A be an associative algebra over C and M an irreducible A-module
with countable dimension. Then Enda(M) = C.

Proof: Let ¢ € Enda(M). We may assume ¢ # 0. First, we show that there is
a scalar & € C such that ¢ — « is not invertible on M. Assume false. Then ¢ — «
is invertible for all @« € C. Then f(p) is also invertible for any f(z) € C[z] and so
f(p)~t is well-defined element in Enda(M). Take a non-zero element v € M and fix it.
Then a mapping C(z) 3 f(z)/g(x) — f(¢) - g(p)™' - v € M is well-defined and so we
obtain a C-linear homomorphism from C(x) to M. Since ¢ — « is invertible for all «,
this homomorphism must be injective, which contradicts to the assumption that M is
countable dimension. Thus we can take an ay € C such that ¢ — g is not invertible.
Then at least one of the spaces Ker(p — agp) or Im(p — ag) is a proper subspace of M. If
Ker(p — ag) # 0, then Ker(p — ag) = M by the irreducibility and we are done. So we
assume that Ker(¢p — ap) = 0 and Im(¢ — ag) # 0. Then again by the irreducibility we
have Im(¢ — ap) = M which means that ¢ — o is surjective. In this case we can also
verify that ¢ — « is injective and hence invertible, which contradicts to the choice of ay.
Thus ¢ = oy € C. 1

Corollary 3.1.4. Every irreducible N-graded V-module has a L(0)-weight space decom-
position.

Proof: Let M = &,exM(n) be an irreducible N-graded V-module with M (0) # 0.
Then by Corollary 3.1.2 M (0) = Spanc{o(a)v | a € V} with a non-zero v € M(0). By
the Jacobi identity, we have the following commutator formula:

> m

=0

for any a,b € V. By substituting L(0) = w() into the above equality, we obtain
[L(O), a(m)] = (Wt(a) —-—m — l)a(m).

In particular, we have [L(0),0(a)] = [wa), @(wi(a)-1)] = 0. Then there is an h € C such
that L(0) acts on M(0) as a scalar h by Lemma 3.1.3. Since M = V - v, M(n) =
Spanc{a(wi(a)-1-n)v | @ € V'}. Then L(0) acts on M(n) as a scalar n + h. 1

Proposition 3.1.5. ([DL]) Let M*, i = 1,2, 3, be V-modules and I(-,z) a V -intertwining
operator of type M* x M? — M?3. Assume that there are subsets S* C M fori = 1,2 such
that I(s',2)s*> = 0 for any s' € S' and s* € S?. If M" has no proper submodule containing
St fori = 1,2, then I(-,z) = 0. In particular, if both M* and M? are irreducible, then
I(u,z)v =0 for some non-zero u € M*, v € M? implies I(-,z) = 0.
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Proof: Let s’ € S' and s* € S? By assumption, we have Y (a,2)I(s', 2)s* =
0 for any @ € V. Then by the commutativity there is an N > 0 such that (z; —
2)NI(st, 29)Y (a,21) = (21 — 22)VY (a, 21)I(s', 2)s> = 0. Since there are finite nega-
tive powers of 21 in I(s',2)Y (a, z1)s?, we have I(s', 29)Y (a,2,)s* = 0 for any a € V.
Then by the Jacobi identity we have

I(a(n)sl, 2)32 = Res,,{(z0 — 2)"Y (a, zo)[(sl, z)—(—z+ zo)”I(sl, 2)Y (a, zo)}32 =0,

and hence I'(M?", 2)S? = 0. Then by the commutator formula:

o0

o 102 = 3 () ae

we have I(u,z)am)s® = aml(u,2)s* — |amy, I(u,z)]s* = 0 for any a € V and n € Z.
Therefore, I(M", 2)M? = 0 and hence I(-,2) = 0. I

Corollary 3.1.6. Let V be a simple VOA.

(1) For any a,b €V, Y (a,z)b =0 implies a =0 or b= 0.

(2) Let W be an irreducible V-module. Then for non-zero a',...,a* € V and linearly
independent w', ... w*" € W, Zle Y(a', z)w" # 0.

(3) Let W be a V-module. Then Y (a,z)w = 0 implies a =0 or w = 0.

Proof: (1) is clear from Proposition 3.1.5. Consider (2). If >,V (a’, 2)w" = 0,
then we can show that > Y (a,2)Y (b', z1)w’ = 0 for any b' € V by a similar argument
used in the proof of Proposition [3.1.5. Thus Y, Y (a’, 2)Y (b", z,,) - - - Y (b*, 21)w" = 0 for
bt,...,b" € V. Since w' are linearly independent in W and C is algebraically closed, we
are reduced to the case 1 = 1 by the density theorem. This gives a contradiction and the
assertion holds.

Now consider (3). Assume that a # 0 and w # 0. We may assume that W =V - w.
We can take a maximal submodule U of W which does not contain w by Zorn’s lemma.
Then the quotient W/U is an irreducible V-module and a relation Y (a,z)w = 0 in W
yields a contradiction. 1

3.2 A theory of local systems

In this section we review a theory of local systems in [Lil] [Li2] and their close relations
to a theory of vertex operator algebras.
Let M = M° @ M' be a Z,-graded vector space. Then End(M) = (End(M))° @
(End(M))! is also Zs-graded vector space where
(End(M))° = {a € End(M) | aM* C M* fori=0,1},
(End(M))! = {a € End(M) | aM° C M*, aM' C M°}.
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Furthermore,
End(M)([z, 27']] = (End(M))°[[2, 27 '] @ (End(M))"[[z, z7']]

is also a Zs-graded vector space. It is clear that the derivative operator 0, := d/dz is an
endomorphism of (End(M))[[z, 27!]] preserving the Z,-grading.

Definition 3.2.1. Let M be a Zs-graded space and 0y, a Zs-homogeneous endomorphism
on M. A fieldon (M, 0y) is a formal series a(z) = Y, .5 anz "' € End(M)|[[z, z']] such
that a(z)v € M((z)) for any u € M and [0y, a(2)] = 0.a(z). We denote by F(M, dyr)
the space of all fields on (M, dy).

It is obvious that F(M,dyr) has a Zs-grading F (M, 0y)° @ F(M,0y)" and 0, is a
Zs-homogeneous endomorphism of F(M,dy). The space F(M,dy) has the following
algebraic operations:

Lemma 3.2.2. Let a(z),b(z) be Zo-homogeneous elements in F(M,0pr). Then
a(z) o, b(2) := Res,y {(20 — 2)"a(20)b(2) — (=1)7 @) (4 20V "b(2)a(z)}  (3.2.1)

is also a Zy-homogeneous field on (M,0y) for all n € Z. If a(z) € F(M,0un)" and
b(z) € F(M,0n), where i,j € Zo, then a(z) o, b(z) € F(M,dy )™, that is, o, is a
Zs-graded operation on F(M,dyy).

Proof: An easy exercise. 1

The product o, in F(M,0dy) is called the n-th normal ordered product. For Zs-
homogeneous a(z),b(z) € F(M, Oyr), we define

Y (a(z),20)b(2) := Z a(z) op b(z)zg ™!

neZ

= Res,, {20—15 (Zl - 2) a(z1)b(z) — (1)@ 2515 (_Z h Zl) b(z)a(zl)} :

20 20

and extend linearly on F (M, dpr). Then we obtain a linear map

Lemma 3.2.3. Let a(z) € F(M,0n). Then we have

(1) Y(I(2),20)a(z) = a(z) and Y(a(z),2)I(z) = e*%a(z) = a(z + 20), where I(z) :=
idy € F(M, 0.

(2) Y (0.a(2),20) = [0s, Y (a(2), 20)] = 0., Y (a(2), 20)-
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Proof: See the proof of Lemma 3.1.6 and Lemma 3.1.7 of [Lil]. 1

By this lemma, the space F (M, dys) together with Y'(-, z) has a similar structure to a
vertex superalgebra. However, the most important axiom, the commutativity, is lacked.
So we have to consider suitable subspaces of F (M, 0yr) to find vertex algebra structures.

Definition 3.2.4. Two Zs-homogeneous fields a(z),b(z) € F(M,0y) are said to be
mutually local or simply local if there is an integer N such that

(21 — 22)"a(z1)b(z2) — (—1)5(“’b)(—22 + 21)"b(2z2)a(z1) =0

for all n > N. Among such N, the minimum one is called the order of locality of a(z) and
b(z) and denoted by N(a,b). A Zs-graded subspace of F(M, y) is called local if any two
Zs-homogeneous fields in it are mutually local. A local system on (M, dy;) is a maximal
local subspace of F(M, Oyr).

Remark 3.2.5. By the maximality, every local system on (M, dy) contains the identity
field I(z) = idyy,.

Remark 3.2.6. If (V,Y (-, 2), 1,w) is a vertex operator superalgebra and (M, Yy (-, 2)) is a
V-module, then the space {Yas(a, 2) | a € V'} is a local subspace of F(M, L(—1)).

Lemma 3.2.7. If fields a(z) and b(z) are mutually local, then so are a(z) and 0,b(z).
Proof: Let N be the order of locality between a(z) and b(z). Then
(21 — 20)V T a(20)b(22) — (—1)°@Y) (—z + 21) V1 b(25)a(z) = 0.
Differentiating the above with respect to z;, we obtain

(21 — 20)V T a(20)0,,0(20) — (—1)5@Y) (=25 4 2)V 1O, b(22)a(z) = 0.

The following famous lemma is known as Dong’s lemma.

Lemma 3.2.8. Let a(z),b(2), c(2) be Zy-homogeneous mutually local fields. Then a(z) o,
b(z) and c(z) are also mutually local for all n € Z. The order of locality is bounded as

follows:
[N(a,b)| + IN(b,c)| + [N(c,a) if n=0,
N(ao,b,c) <
|IN(a,b)| + |N(b,c)| +|N(c,a)| —n if n<O0.
Proof: See, for example, the proof of Proposition 3.2.7 of [Lil]. 1

Proposition 3.2.9. Let V be a local system of fields on (M,0y). Then for any a(z) and
b(z) inV, Y(a(2),z) and Y (b(z), z0) are mutually local fields on (V,0y,).
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Proof: See the proof of Proposition 3.2.9 of [Lil]. 1
By this proposition, the vertex operator map Y (-, z) defines a vertex superalgebra

structure on every local system.

Theorem 3.2.10. Let (M, 0y) be a Zs-graded space with a Zs-homogeneous endomor-
phism Oy, and let V' be a local system of fields on (M,0y). Then (V)Y (-, 2),1(z),0,) is

a vertex superalgebra and M is a V-module.

Corollary 3.2.11. Let (M,0y) be a Zo-graded space with a Za-homogeneous endomor-
phism Oy, and let S be a set of mutually local fields on (M, 0yr). Let A be a local system
on (M, 0y ) containing S. Then the subspace generated by S and I(-, z) under the normal

ordered products forms a vertex superalgebra in A with M as a module.
The following theorem enable us to adopt another definition of a vertex algebra.

Theorem 3.2.12. Let V' be a vertex superalgebra. Then to give a V-module (M, 0u) is

equivalent to give a verter superalgebra homomorphism from V to some local system of
fields on (M, Oyr).

Proof: See the proof of Proposition 3.2.13 of [Lil]. 1
By this theorem, we may adopt the following definition of a vertex superalgebra:

7 A vertex superalgebra V' is a subspace of fields F (M, dys) on a Zs-graded
vector space (M, Oyr) such that (i) any two fields in V' are local; (ii) Vo,V C V
for all n € Z; (iii) 1€ V.”

(We do not have to assume that fields in V' are closed under 0, as a(z) o_y 1 = 0,a(2).)
Actually, if V' is a vertex superalgebra, then the subspace {Y(a,z) | a € V'} of fields on
(V, 0y ) satisfies all the conditions above. On the other hand, if V' is a vertex superalgebra
in the above sense, then by the 1:1 state-field correspondence a(z) € V «— Y (a(z), 29) €
F(V,0,), V carries a structure of an axiomatic vertex superalgebra.

Uniqueness Theorem. The following theorem is extremely useful in identifying a field
with one of the fields of a vertex operator algebra.

Theorem 3.2.13. (|G//K]) Let V' be a vertex superalgebra and let t(z) be a field on V
which is mutually local with all the fields Y (a,z), a € V. Suppose that t(z)1 = e**b for
some b e V. Then t(z) =Y (b, z).

Proof: Since the derivation 0y does not change the Zy-parity, we note that (¢, a) =
g(b,a) for any a € V. By the assumption of locality we have:

(21— 20)Vt(21)Y (a, 20)1 = (=1)*ED (=2 + 2))VY (a, 25)t(21)1
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for sufficient large N > 0. Since Y (a, 2)1 = ¢** a, we obtain:
(21 — 2)Vt(21)e2Va = (=1)FHYY (a, 20)e? b = (=1)°4VY (a, 20)Y (b, 21)1.
By taking sufficiently large N, we get
(21 — 2)Vt(21)Y (@, )1 = (=1)°EDY (a, )Y (b, 21)1 = (—=1)5EVY (b, 21)Y (a, 2) 1.
Letting 2, = 0 and dividing by z{¥, we get t(z)a = Y (b, 2)a for any a € V. 1
Existence Theorem. The following theorem allows one to construct vertex superalge-
bras.

Theorem 3.2.14. (Theorem 4.5 of [K]) Let V' be a vector superspace, let 1 be an even
vector of V' and Oy an even endomorphism of V. Let {a“(z) = >_
collection of Zy-homogeneous fields on V' such that

(i) [0v,a%(z)] = 0.a%(z) for all a € I,

(ii) Oyl = 0, a%(2)1 = alyl, a € I, where the af ,)1 are linearly independent in V,

«

a(n)z*”*}ael be a

neZ

(iii) a®(z) and a®(z2), a, 3 € I, are mutually local,
(iv) the vectors a?}ll) e a?‘j’;)]l, Jje € Z, n >0, span V.
Then the formula

Yv(aghy - -aiiy 1, 2) = a™(z) 0, Yy (aify - - a7 )1, 2) (3.2.2)

defines a unique structure of a vertex superalgebra on V' such that 1 is the vacuum vector,
Oy is the derivation and Y (af )1,z) = a®(z) for all a € I.

Proof: Choose a basis among the vectors of the form (iv) and define the vertex
operator Y (a, z) by formula (3.2.2). By (iii) and Dong’s lemma, the locality axioms hold.
Therefore, V' has a structure of a vertex superalgebra which depends on a choice of linear
basis of V' at now. If we choose another basis among the monomials (iv) we get possibly
different structure of a vertex superalgebra on V', which we denote by Y’(-, z). But all the
fields of this new structure are mutually local with those of the old structure and satisfy
Y'(a,2)1 = e**a. Then by Theorem 3.2.13 it follows that these vertex superalgebra
structure coincide. Thus (3.2.2)) is well-defined and we obtain the uniqueness of the

structure. 1

3.3 Free vertex algebras

In the previous section, we have seen that a vertex algebra is essentially a space of mutually
local fields on a vector space. We also know that the Jacobi identity, the main axiom of
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a vertex algebra, is equivalent to the commutativity of vertex operators or in other words
the locality of fields. By these facts, it is a quiet natural problem to construct a vertex
algebra from a set of generators and a locality function among them. More precisely, we
would like to construct a universal vertex algebra which is determined only by generators
and their locality, that is, it has only the minimum relation to be a vertex algebra and
thus shall have a universal property. Such a vertex algebra is called a free vertex algebra
and studied by Roitman [R1] [R2]. In this section we give a construction of free vertex
algebras as an application of a theory of local systems.

First, let us consider locality functions. Let (V = V°® V1 Y(-,2),1,0) be a ver-
tex operator superalgebra. For any Zs-homogeneous a,b € V| denote by N(a,b) the
order of locality between Y (a, z) and Y (b, z). Then we have (21 — 29)"Y (a, 21)Y (b, 29) —
(—1)5(@0 (—2y 4 2)"Y (b, 25)Y (a, z1) = 0 for n > N(a,b). Then by the Jacobi identity we
have

Y(a’(n)b’ 22) = ReSZOZ[T)lY(Y<a7 ZO)bu 22>

) Y (Y (a, 20)b, 22)

Z9 + 2o

Z1

= Res,,Res., 202,10 (
-1 21 — %2
= Res,, Res., 2§ {Zo J <—> Y(a,z)Y (b, 22)
20

_ (—1)eb) (_Zz—“l> Y(b, 2)Y (a, ZI)}

20

= Res., {(z1 — 22)"Y (a, 21)Y (b, 22) — (—=1)*®) (=25 + 21)"Y (b, 22)Y (a, 21) }

=0
for n > N(a,b). Applying the above to the vacuum, we obtain an)b = 0 for n >
N(a,b). Conversely, if a¢,)b = 0 for all n > N, then one can similarly Show that (z; —
2)VY (a, 21)Y (b, z5) — (=1)5@9 (— 2+ 21)NY (b, 2,)Y (a, 1) = 0. Thus the order of locality
is the minimum N such that a(,)b = 0 for all n > N. By the skew-symmetry Y (a, 2)b =
(—1)5(@9e2?Y (b, —2)a, one can easily see that N(a,b) = N(b,a). This observation lead

us to the following fact.

Lemma 3.3.1. Let a € V be Zy-homogeneous. Then a € VO if and only if N(a,a) is
even.

Proof: By definition of the locality, we have a(n(,qa)-1y¢ # 0. On the other hand,

the skew-symmetry implies

(a,a)+j
AN (a0 = (—1)7 Z P a1 = ()T a0 .

7>0

Thus N(a,a) = e(a,a) mod 2. 1
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Now we start to give a construction of a free vertex algebra. Let B = B° U B!
be a set of symbols, N : B x B — Z be a function such that N(a,a) € 2Z for all
a € B% and N(a,a) € 2Z + 1 for all a € B'. Let A be an associative algebra gen-
erated by symbols {0,a(n) | a € B,n € Z} with the relation [0,a(n)] = —na(n —
1). Let 1 be a symbol and F a quotient A-module of a free A-module A - 1 factored
by a relation 91 = 0. Then F has a linear basis X = {aj(ny)---ar(ng)l | a; €
B,n; € Z,k > 0}. We define a function N’ : B x X — Z as follows. First, we set
N'(a,1) = 0 for a € B. Then for k£ > 1 we inductively define N'(a,a;(ny)---ag(ng)l)
by |N(a,ay)| + N'(a,az(ng) - --ap(ng)l) + N'(ay, as(ng) - - - ag(ng)1) if ny > 0, and by
|IN(a,a1)] + N'(a,az(ng) - - - ar(ng)1) + N'(ay, az(as) - - - ag(ng)1) — ny if ny < 0. Let I be
a left A-ideal of F generated by a(m)z, a € B, x € X and m > N'(a,z). For a € B,
set a(z) == > cpa(n)z7" 1. Then a(z), a € B, are fields on (F/I,0). Let J be a left
A-ideal of F/I generated by coefficients of (z; — 22)N(@®a(z)b(z2)v — (—1)5@Y (=2, +
21)N@Ob(25)a(z)v, a,b € B and v € F/I, and set F := (F/I)/J. Then a(z), a € B,
are mutually local fields on (F,0) and hence they generate a vertex superalgebra. Then
by Theorem [3.2.14, we have a unique vertex superalgebra structure (F,Y (-, z), 1,9) such
that Y (a(—1)1, z) = a(z) for a € B, where Z denotes the image of an element = € X in
F.

To emphasize the generators and the locality function, we denote F by Fx(B) as in
[R1] [R2]. By our canonical construction, Fy(B) has the following universal property:
Let V = V%@ V! be a vertex superalgebra and S a subset of V? LU V1. Let Ng be the
locality function on S. Then there exists a unique vertex superalgebra epimorphism from
Fn,(S) to a subalgebra of V' generated by S. By this fact, Fy(B) is called the free vertex
superalgebra defined by the set of generators B and the locality bound N. Note that the
order of locality between Yz, 5)(a(—1)1, 2) and Yz, ) (b(—1)1, 2) for a,b € B are less than
or equal to N(a,b), and we do not know whether it is exactly equal to N(a,b) at now. So
our construction determines only bounds for orders of locality. A precise description of
the order of locality is deeply studied by Roitman in [R1] and [R2].

3.4 Invariant bilinear form

Let (V,Y(+,2),1,w) be a VOA and W = &,cxW(n) an N-graded V-module such that
each homogeneous component W(n) is of finite dimension. We set the restricted dual
of W by means of a direct sum W* := @,exW(n)*. Since W(n) are finite dimensional,
we see that (W*)* is naturally isomorphic to W. In this section we define a V-module
structure on the dual space W*. Let (- | -) : W* x W — C be a canonical pairing. We
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define the adjoint vertex operator Y3 (-, z) by
(Yi(a,2)v | w) = (v ] Ya(eFD (—27H 00, 2 1w) (3.4.1)
fora €V, weW and v e W* If we write Yy(a, 2) = 3_, o5 a(,y2 "', then

1)@ |
(amy [ w) = Z % < v | (L(1)"a)@wi(a)—n—i-2)w > (3.4.2)

>0
The following is proved in Theorem 5.2.1 of [FHL]:

Theorem 3.4.1. Let (W,Yy(+, 2)) be an N-graded V-module with finite dimensional ho-
mogeneous subspaces. Then (W* Y} (-, 2)) is also an N-graded V-module. Moreover,

(W*)* ~ W as V-modules.

We call (W*, Y} (-, 2)) the dual module of (M, Y (-, 2)). The pairing has an invariant
property for the Virasoro algebra:

(L(n)v [w) = (v [ L(=n)w).

If W has an L(0)-weight space decomposition W = @,50W,4n, then so does W* =
®n>0W, ., and by the above invariance we have (W} ., | Wy ) = 0 unless m = n.

If W* ~ W as a V-module, then such a module is called self dual. Clearly, a self dual
module has a V-invariant bilinear form on it. Now let us consider the case W = V. By
definition, an invariant bilinear form (- | -) on V' is a bilinear form satisfying the following
property:

(Yy(a,z)b' | b?) = (b | Yy (LW (—272)LO0g, »71)p?).
The existence of an invariant bilinear form is equivalent to the existence of a V-module
isomorphism from V* to V. About this isomorphism, the following theorem has been
established in Theorem 3.1 of [Li3].

Theorem 3.4.2. The space of invariant bilinear forms on V' is isomorphic to the space
(Vo/L()VA)* = Home(Ve/L(1)V4, ©).

Proof: Let F be the space of invariant bilinear forms on V' and (- | -) an element
in F. Take a,b € V arbitrary. Then

(a]b) ={anl|b)=Res.z7(Yy(a,2)1]D)
= Res,z (1| Yy (e?2MW) (—z72)L0)¢, z=1)p).

Let @,y be a linear functional on V; defined by ®(y(x) = (1| x) for x € Vi. Then by
the above equality (- | -) is completely determined by ®y. Since L(—1)1 = w1 = 0,
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we have ®.y(L(1)a) = (1| L(1)a) = (L(=1)1 | a) = 0 for any a € V. Therefore,
L(1)Vi C Kery, @y and so we may view @y as a linear functional on V;/L(1)V;i. Thus
we obtain a linear map ® : F 3 (-|-) — &y € Home(Vo/L(1)V4, C).

On the other hand, if f € Hom¢(Vy/L(1)V;,C), then we can regard f as an element
of V* which vanishes on L(1)V; and on V,, for all n # 0. Let (- | -) be a natural pairing
between V* and V. For any a € V, we have (L(—1)f | a) = (f | L(1)a) = 0 and hence
L(—1)f = 0in V*. Then the next lemma tells us that a linear map ¢ : V3 a +— a1 f €
V* is a V-isomorphism. Namely, V' as a V-module is isomorphic to V*. Thus, we obtain
a linear map ¥ : Hom¢(Vo/L(1)V;,C) — F. One can easily verify that U o & = idx and
DoV = idHomC(Vo/L(l)Vl,C)~ Thus F ~ HOIH(C(%/L(l)Vl, C) 1

In the proof above, we find a vector v in a module such that L(—1)v = 0. Such a
vector is often called a vacuum-like vector and has an important property.

Lemma 3.4.3. ([Li3, Proposition 3.3]) For a V-module M, set M** = {v € M |
L(—1)v =0}. Then

(i) For any v € MY, Yy (a,z)v = eZL(’l)a(,l)v for all a € V. In particular, apyv = 0
for alln > 0.

(i) A linear map 7 : Homy (V, M) 3 ¢ — ¢(1) € MY is isomorphism. In particular,
V 3 aw ayv € M defines an embedding of adjoint module V' into M for each v € MY*.

Proof: (i): Let a € V and v € M**. Then there exists an N such that agyv = 0
for all n > N and av_1yv # 0. If N > 0, then by [L(—1),a@)] = —nag—_1), we have
0 = L(=1)awyv = [L(—=1),am]v + aw)L(—1)v = —Na-_1yv, and hence ay_1yv = 0,
which is a contradiction. So ag,)v = 0 for n > 0. The equality Yy (a, 2)v = eZL(_l)a(,l)v
will follow from (ii).

(ii): If ¢ € Homy (V, M), then clearly ¢(1) € MY*°. Let a,b € V and u € M**. Then

by (i)

if T n
(agmb)-nu =D (1) <@) {am-9b-14i) = (=1)"bm-1-0a@ Yu = ambyu

i>0

and hence ¢, : V' 3 a +— a1yu € M is a V-homomorphism and 7(¢,) = ¢,(1) =u. So 7
is epimorphism. On the other hand, if 7(¢) = 0, then ¢(a) = ¢(a—1)1) = a1)p(1) =
for all @ € V so that 7 is also injective. Thus 7 is an isomorphism. 1

Corollary 3.4.4. If V is a VOA of CFT-type and L(1)Vy = 0, then V has a unique

wmwvariant bilinear form up to linearity.

Remark 3.4.5. By the corollary above, we can show that all of the examples, that is, the
free bosonic VOA Mj(1,0), the lattice VOA V7, the affine VOA L,(¢,0) and the Virasoro
VOA Ly (c,0) have a unique invariant bilinear form up to linearity.
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The following are proved in [FHL] and [Li3].

Proposition 3.4.6. Let V be a VOA and M an N-graded V-module.

(1) ([FHL]) If V' has an invariant bilinear form, then it is automatically symmetric.

(2) ([Li5]) If M s irreducible and has an invariant bilinear form, then it is either sym-
metric or skew-symmetric.

3.5 Zhu algebra

In this section we present a tool to study representations of a VOA, called the Zhu algebra.
There are many variants of Zhu algebras; Zhu algebra for twisted representation, Zhu
algebras for higher degrees, etc. Here we treat the most fundamental case. For references,
see [Z] [Wan| [DLM1] [DLM6] [DLM7] [MT] [Y1]. Let us consider a Zhu algebra for a
vertex operator superalgebra. Let V' be an SVOA. For simplicity, we assume that V'
is of CFT-type throughout this section. The following definition is due to Zhu [Z] and
Kac-Wang [KW].

Definition 3.5.1. We define the bilinear maps * : V®V — Vand o: V®V — V as

follows: )

(1+ 2)"

Res.Y (a, 2) b ifaecV?
axb = z
0 if a € V1,
s 1 wt(a)
Res,Y (a, z)%b if a € VO,
z
aob := a +Z)Wt(a)_%
\ Res.Y(a,z)~—————b ifae V%

z

Extend to V ® V linearly, denote by O(V) C V the linear span of elements of the form
a o b, and by A(V) the quotient space V/O(V).

Remark 3.5.2. Tt follows from the definition that ao 1 = a for a € V1. So V! is contained
in O(V). We also note that O(V?) € O(V'), where O(V?) is the kernel of the Zhu algebra
A(V?) for a VOA VY. Therefore, A(V) is a quotient algebra of A(V?).

The algebra A(V) is called the Zhu algebra attached to V. Zhu algebras have a
powerful role in the representation theory of SVOAs. In [Z] and [KW] one can find the
following 1:1 correspondence theorem.

Theorem 3.5.3. (/Z] |[KW])
(1) O(V) is a two-sided ideal of V' under the multiplication x. Moreover, the quotient
algebra (A(V), %) is associative.
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(2) 14+ O(V') is the unit element of A(V') and w+ O(V') is in the center of A(V).

(3) Let M = @nE%NM(n) be an iN-graded V-module. Then the top level M(0) is an
A(V)-module via a + O(V') — o(a) = ayi(a)1-

(4) Given an A(V')-module (W, ), there exists an $N-graded V-module M = EBHE%NM(n)
such that the A(V')-module M(0) and W are isomorphic. Moreover, this gives a bijective
correspondence between the set of irreducible A(V')-modules and the set of irreducible %N-

graded V -modules.

Ezample. Let Myi(c,0) = Myi(c,0)/Myi(c,1) be the Virasoro VOA with central
charge c¢. In [Wan], it was proved that A(Myy(c,0)) ~ Clz]. For BPZ-series ¢,, = 1 —
6(p—q)?/pq with coprime integers p, g > 2, it is also proved in [Wan| that A(Lyi,(cp4,0)) =~
Cla)/(ITP2 TToi (x — h29)) where h2¢ are defined as in (2.6.1).

For a V-module U, we can construct an A(V')-bimodule A(U) by a similar way (cf.
[FZ] [Li6] [KW]).

Definition 3.5.4. For an %N—graded V-module U, we define bilinear operations a o u,
a * u and u * a for homogeneous a € V and u € U as follows:

(14 2)"@-3

aou:= Res,Y(a,z) u, foraeV’' r=0,1,

Z2—r
1 wt(a)
a*u:= Res,Y (a, z)ﬁu, for a € V°,
z
1 wt(a)—1
u*a:= Res,Y(a, z)¢u, for a € VO,
z

axu=uxa=0, foracV?

and extend linearly. We also define O(U) C U to be the linear span of elements of the
form a o and A(U) to be the quotient space U°/ (O(U) NUY).

Remark 3.5.5. If V is an SVOA, then our definition of A(U) differs from the Kac-Wang’s
original one. Namely, we define A(U) to be a quotient space of UY. See [Y1] for the
validity of this change.

Let I(-,2) be a V-intertwining operator of type M x M? — M?3. By definition, we
know that z+h2=hs[(. 2) € Home (M2, M3)[[z,27Y]. It is convenient to set [(u,z) =
> ez Unz "I MTheths and deg(u) = wt(u) — hy for uw € M.

Theorem 3.5.6. ([FZ] [KW]) A(U) is an A(V')-bimodule under the action .

Theorem 3.5.7. (1) ([FZ] [KW]) For a V -intertwining operator I1(-, z) of type U x M* —
M?, define the zero-mode operator by o' (u) := Udeg(u)—1- 1Then we have a linear injection

from (UMA;)V to Homag) (A(U) @y M*(0), M?(0)) by a mapping: 1(-,z) — o’.
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(2) (Theorem 2.11 of [Li6]) Suppose that every %N—gmded V-module is completely re-
ducible. Then the linear map I(-,z) — o! given in (1) defines a linear isomorphism

between (UMA;) and Hom v (A(U) @4y M*(0), M?(0)).

|4

Remark 3.5.8. As pointed out in [Li6], the assumption on completely reducibility in (2)
of the theorem above is necessary. This property is known as the rationality, and will be
discussed in the next section.

We give an application of Zhu algebras. Let (V?,Y?(-, 2),1',w'), i = 1,2, be VOAs.
Then the tensor product V! ®c V? naturally carries a structure of a VOA with vertex

operator map

Y'oYH(a®b,2) =Y (a,2) @Y?(b, 2)
and the vacuum vector is 1' ® 1* and the Virasoro vector is w' ® 1? + 1' ® w?. Similarly,
let (M, Yy (-, 2)) be a Vi-module for i = 1,2. Then M'® M? is a V! ® VZmodule with

vertex operator map
YMl ® M2 (CL X b, Z) = YMI (a, Z) X YMQ (b, Z).

Since both V' ® 1? and 1' ® V2 are mutually commutative subalgebras of V! ® V2, one
can easily verify the following.

Lemma 3.5.9. Let V' be VOA and M* a Vi-module fori=1,2.

(1) M' ®@c M? is an irreducible V' @ VZ-module if and only if each M* is an irreducible
Vi-module for i =1,2.

(2) AV ®@c V?) =~ AV ®@c A(V?) as an associative algebra.

(3) A(M'®c M?) ~ A(M*) @c A(M?) as an A(V! @c V?)-module.

Corollary 3.5.10. Let Vi, i = 1,2, be VOAs and let M%7, j = 1,2,3, be strong V-
modules. If all N-graded V*-modules are completely reducible, then we have the following

isomorphism:
M3 @¢ M23 M3 M2
(Ml:l Qe M2 M2 @ M2,2) i = (MU MLQ) o~ @ <M2»1 M;g) e
The following assertion was first established in [FHL].
Proposition 3.5.11. ([FHL]) Let V', i = 1,2, be VOAs. If all N-graded V*-modules

are completely reducible, then any irreducible V' @c V2-module is isomorphic to a tensor

product of modules, necessarily irreducible, for the V.

Proof: Let M be an irreducible N-graded V! ® V2-module. Since M as a V'-module
is completely reducible, M is a direct sum of copies of an irreducible V'-module, say W1,
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since M is an irreducible V! ® V2-module. So as a linear space, we have a decomposition
M = W!'®@Homy: (W?' M). Since actions of V! and those of V? on M is mutually
commutative, V2 naturally acts on the space of multiplicity Homy (W, M), which must
be irreducible. Thus M is a tensor product of irreducible modules. 1

3.6 Rationality and Cs-cofiniteness

A Zhu algebra works so powerful when the associated VOA is rational.

Definition 3.6.1. A VOA V is called rational if every N-graded V-module is completely
reducible. V' is called regular if every V-module is completely reducible and every irre-
ducible V-module is a strong module.

Definition 3.6.2. A rational VOA V is said to be holomorphic if the adjoint module V'

is a unique irreducible V-module.

Clearly, a regular VOA is rational by definition. Rational VOAs enjoy many “nice”
properties.

Theorem 3.6.3. ([Z] [DLM]1)]) Let V be a rational VOA.

(1) Zhu Algebra A(V') is a finite dimensional semisimple associative algebra.
(2) Every irreducible N-graded V -module is a strong module.

(3) There are finitely many inequivalent irreducible strong V-modules.

Zhu algebras are introduced in [Z] to prove the modular invariance property of the
space of g-characters. In [Z], another condition was also introduced to prove it, which is

now called the Cs-cofiniteness condition.

Definition 3.6.4. Let V be a VOA. A V-module M is said to be Cs-cofinite if the space
Co(M) = Spang{aav | @ € V, v € M} has a finite co-dimension in M. If V as a

V-module is Cs-cofinite, then we say V' satisfies Cs-cofinite condition.

Remark 3.6.5. Almost all examples of rational VOAs satisfy the Cy-cofinite condition. A
good reference is [DLM2].

A Cy-cofinite VOA also enjoys many “nice” properties.

Theorem 3.6.6. ([AM] [DLM2] [M9]) If V is Cs-cofinite, then the top weight of any
irreducible V -module 1s a rational number.

Theorem 3.6.7. (JABD]) Let V be a VOA of CFT-type. Then V is reqular if and only

if V' is rational and satisfies Cy-cofinite condition.
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In the proof of the above statement, we use certain spanning set for a module.

Theorem 3.6.8. Let V' be a Csy-cofinite VOA of CFT-type. Let A be a finite dimensional
subspace of V' such that L(0) acts on A and V = A+ Cy(V).
(i) ([GN]) V = Spanc{a(_, \a{_,, - --a(_, 1| a" €A, nmy>ng>--->n, >0, r >0}

(i) ([Bu] [M9]) Let W be a V-module and w € W. Then there exists an integer T' such
that V - w = Span(c{a% W | a€A ng>--->n.>T r>0}

—m) -

As a corollary of the theorem above, we have:

Corollary 3.6.9. Assume that V is Cy-cofinite and of CFT-type. Then every strong
V-module is C,-cofinite for all n > 2.

There is a representation theoretic characterization of the Cs-cofinite condition.

Theorem 3.6.10. ([MY]) Let V' be a VOA of CFT-type. Then the following are equiva-
lent:

(1) V is Cy-cofinite.

(2) Every V-module is a direct sum of generalized eigenspaces of L(0).

(8) Every V-module is an N-graded module such that each homogeneous component is a
direct sum of generalized eigenspaces of L(0).

(4) V is finitely generated and every V-module is an N-graded module.

Let o0 € Aut(V) be of finite order. We have similar results in o-twisted theory.

Definition 3.6.11. A VOA V is called o-rational if every ﬁN—graded V-module is com-
pletely reducible. V' is called o-regular if every V-module is a direct sum of irreducible

strong V-modules.

As in the untwisted case, it is shown in [DLMI] that every irreducible FﬂN—graded
V-module is a strong module. The following slight generalizations have been established
in [Y2].

Theorem 3.6.12. ([Y2]) Let V be a Cy-cofinite VOA of CFT-type.

(1) Let A be a finite dimensional subspace of V' such that A is closed under the actions of
o and L(0), and V = A+ Cy(V). Let W be a o-twisted V -module. Then for each w € W
there exists an T € ﬁZ such that

V-w = Spanc{a(_y,) - a{_,yw [ a' € A, ny > >n, > T, ny € ;Z}.

(2) V is o-regular if and only if V' is o-rational.
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Here we give a proof of (1), which is a good exercise of the o-twisted Jacobi identity.
Let V = V%@ ... @ V7= be eigenspace decomposition of ¢ with V" = {a € V | ga =
g2V =1r/ 7la}. Tt is know that The o-twisted Jacobi identity is equivalent to the following
two identities:

(1) The iterate formula:

N oo .
—7“/ o]\ (p+i
(a(p)b) |a\ \a\ ZZ ( )( j )
=0 7=0 (361)
X {a(p—H J+|U|)b(q—i+j+ﬁ) — (= b(p+q =i+ (J+|o‘)}

where a € V" and b € V?°, and N is a positive integer such that a,)b =0 for all n > N.
(2) The commutator formula:

ot b0 = 3= (") D, (362)
=0
We recall the o-twisted universal enveloping algebra 47(V') of V' in [DLMI1]. As a tensor
product of two vertex algebras (C[ti\?ll] and V, V = (C[ti\%\] ®c V' carries a structure
of a vertex algebra and gy := V/(% ®1+ 1® L(—1))V forms a Lie algebra under the
0-th product induced from V. Define a linear isomorphism & on V by o(t"®a) =
e 2™V=Inn @ 54, Then & defines an automorphism of a vertex algebra V and hence it
gives rise to an automorphism of a Lie algebra gy,. Denote by g{, the J-invariants of gy,
which is a Lie subalgebra of gy,. Then the o-twisted universal enveloping algebra U7 (V') is
defined to be the universal enveloping algebra for gf,. The algebra {7(V') has a universal
property such that for any o-twisted V-module M, the mapping a(n) € U*(V) — a@,) =
Res. Y (a, z)z" € End(M) gives a representation of U7 (V) on M. It is clear that g, is
spanned by images of elements "7 @a witha € V7,0 < r < |o| — 1. We denote the
image of "l @ a in g7 by a(n + ﬁ) By definition, we have the following commutator

relation:
o0

m :
la(m),b(n)] => ( Z, ) (a@b)(m +n —1). (3.6.3)
=0
Definition 3.6.13. For a monomial x'(n;)---2*(n;) in U7(V), we define its length by k,
degree by wt(z1) + - - + wt(z®) and weight by (wt(z!) —ny — 1) +- -+ + (wt(z?) —np — 1).

Let W be a g-twisted V-module generated by one element w € W. In this case, a
linear map ¢y, : x'(my)---a"(my) € W(V) = a2l yw € W =V - w gives a
surjection.

The proof of the following assertion comes from Lemma 2.4 of [M9].
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Lemma 3.6.14. Let V' be a Cy-cofinite VOA of CFT type and W a o-twisted V -module
generated by a non-zero element w, i.e., W =V -w. Let U be a finite dimensional
subspace of V' such that both L(0) and g act on U and V. = U + Cy(V). Then the
image ¢,(X) € W of any monomial X = z*(my) -+ x%(my) in U (V) can be expressed
as a linear combination of images of monomials a*(ny)---a®(ng) in U7 (V) such that
degal(ny)---a(ns) is less or equal to deg X, wtal(ny)---a®(ns) = wtX and n; <
e < mg < T, where T is a fized element in ﬁZ such that ¢, (B(m)) =0 for all 5 € U
and m >1T.

Proof: We divide the proof into several steps.

Claim 1. We can express the image ¢,(X) of any monomial X = x'(my)---2*(my) €
UI(V) in the following form:

¢w(X) - ¢w(A) + ¢w(B)7

where A is a linear combination of monomials a*(ny)---a®(ny,) € WI(V) with o € U
such that deg at(ny) - --a*(ng) = deg X and wtal(ny)---of(ny) = wtX, and B is a sum

of monomials whose degrees are less than deg X and weights are equal to wtX.

We prove the claim above by induction on » = deg X. The case r = 0 is clear.
Assume that the claim is true for r — 1. Without loss, we may assume that both L(0) and
g act on 2, 1 < i < k semisimply and none of them is the vacuum. Then, by inductive
assumption, ¢, (z%(ms)---x¥(my)) can be expressed a linear combination of images of
monomials as stated. Therefore, we may assume that 22, - - - , z* are contained in U. Since
V = U+ Cy(V), we can write 2! = o' + 3, af_,b" with L(0)-homogeneous a' € U and
a', b’ € V such that wt(a') = wt(a(_,b') = wt(z'). Then X = a'(mq)a?(my) - - - a*(my) +
>oi(ai_g") (ma)a?(mz) - - ¥ (my). Then using (3.6.1) we can rewrite the image of second
term in the desired form because wt(a’) + wt(b) < Wt(aLQ)bi). This completes the proof
of Claim 1.

Claim 2. Let A = at(my)---a¥(my) € U (V) be a monomial with o' € U and o a
permutation on the set {1,2,...,k}. Then we have the following equality in W :

B (07 (1000) -+~ 07O 1)) = Gu(A) + Gu(B),

where B is a sum of monomials whose degrees are less than deg A and weights are equal
to wtA.

Again we proceed by induction on r = deg A. The case r = 0 is obvious. Assume
that the assertion is correct for deg A = r — 1. If m; > m; for some 7 < j, then using
the commutator formula (3.6.3) we can rearrange A to be as asserted since wt(a(,a’) <
wt(a') + wt(a?) for p > 0. Thus, Claim 2 holds.
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Claim 3. Let A = a'(my)---a*(my) € Y(V) be a monomial with o' € U and my <
<o <my <T. Then the image ¢,(A) of A can be expressed in the following form:

¢w(A) = wa(B) + ¢w(c)7

where B is a sum of monomials B (ny) -+ 3*(ns) with 37 € U such that ny < --- < n,
s <k, deg8t(ny)--- 3(ns) = deg A and wt3'(ny)--- 3°(ns) = wtA, and C is a sum of
monomials whose degrees are less than deg A and weights are equal to wtA.

We show that if the assertion is not correct then keeping both degree and weight of A
we can make my in a monomial A infinitely larger. We define an ordering on N x N. For
(r1,81), (r2, s2) € N x N, we define (r1,s1) > (rq, s2) if r1 > r9, or 11 = r9 and s; > sy. By
this ordering, N x N becomes a well-ordered set and hence we can perform an induction
on (deg A,lengthA) € N x N, Clearly, the assertion is clear for (N,0), (N, 1) and (0, N).
So we assume that the assertion is true for all elements in N x N smaller than (r, s) with
r > 0, s > 0. Then, by inductive assumption, we may assume that mo < --- < my < T.
If m; < msy, then we are done. So we have to consider the case m; = my and the case
my > msy. But, the following argument shows that the latter case can be reduced to the
former case. Assume that m; > msy. Then A can be replaced by a linear combination
of A" = a?(my)at(my)a®(ms) - --af(my) and monomials whose degrees are smaller than
deg A and weights are the same as wtA. Then applying Claim 1 and Claim 2 together with
inductive assumption to A’, we can replace A by a monomial A” = (al)'(m})--- () (m},)
such that (o) € U, m} > my, m) < --- <m), < T, deg A” = deg A and wtA” = wtA.
Then, repeating this procedure, we will reach the case m; = mqg < mg < --- < my.

Now let us consider the case m; = mgy < ms < --- < my. In this case, both o' and
a? are contained in the same eigenspace, say V". Write m; = n + FTI Using the iterate
formula (3.6.1) on (a{_y0%) 2,414 L), We get

o

Su(at (mr)a’ (m)a’(ms) - o (my))

— Mu((al_pya?)@mi + 1)a%(ms) -+ ¥ (my)

30 it (@ (my + )2 (my — i)a® (m3) - - - aF (my,)) (3.6.4)
3 iula®ms + a%(ms — a%(m) a4 (me) + 64 (X).

where X is a sum of monomials whose degrees are less than deg A and weights are equal
to wtA. (Note that in the expansion of (a%fl)a2)(2ml+1), we can make the coefficient of
at(my)a?(msy) non-zero by choosing suitable N in (3.6.1).) The first term in the right-
hand side of (3.6.4) has smaller length than that of A so that by induction together with
Claim 1 and Claim 2 we may omit this term. The second and third terms in the right-hand
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side of (3.6.4) shall be reduced to the case m; > my. Therefore, we obtain a procedure
which makes m; infinitely larger with keeping deg A and wtA, which must stop in finite
steps. Thus, we get Claim 3 and hence we complete the proof of the lemma. 1

3.7 Associativity of fusion products

In this section we discuss elementary results on intertwining operators. Let V' be a VOA
and M’ strong V-modules for i = 1,2,3. Let I(-,z) a V-intertwining operator of type
M x M?* — M3. We define a transpose intertwining operator *I(-,z) of I(, z) of type
M? x M' — M3 by means of

(0% 2ot = VI Cez)o?,  where (o= etV (3.7.1)
for v* € M! and v* € M?.

Proposition 3.7.1. ([FHL]) For I(-,z) € (MVLQ)V, its transpose 'I.(-, z) € (Méijl)v'
Moreover, *(*I.)«(-,z) = I(-,2). Thus, as a linear space, (Mijl)v is naturally isomor-

phic to (M{V[LQ) v

On the other hand, define a contragredient intertwining operator I3 (-, z) of I(-, z) of
type M*' x (M?)* — (M?)* by means of

(T 2P %) = P T (M0 ), where (o= o™, (37.2)
for v! € M, v? € M? and v € M3,

Proposition 3.7.2. ([FHL]) For I(-,z) € (Mjlewg)v, its contragredient operator Ii (-, z) €

2 % . 2% .
(M(lj‘/‘([]\;?’)*)v' Moreover, (I1)%(-,z) = I(-,2). Thus, as a linear space, (M(lM(J\}3)*)V is
naturally isomorphic to (Mjl\/[j\/IQ)V'

Now we introduce a concept of the fusion product. Here we adopt a definition due to
Li [Li7].

Definition 3.7.3. Let M, M? be V-modules. A tensor product or a fusion product for the
ordered pair (M?!, M?) is a pair (M' Ky M? F(-, 2)) consisting of a V-module M* X, M?
and a V-intertwining operator F(-,z) of type M x M? — M Ky M? satisfying the
following universal property: For any V-module U and any intertwining operator (-, z)
of type M x M? — U, there exists a unique V-homomorphism ¢ from M*' Xy M? to U
such that I(-, z) = Y F (-, 2).

Remark 3.7.4. It follows from the universal property that if a tensor product exists, then

it is unique up to isomorphism.
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It is shown in [HL1]-[HL4] and [Li7] that if a VOA V is rational, then a tensor product

for any two V-modules always exists. So in the rest of this section we assume that V'

is rational. Then there are finitely many irreducible V-modules by the previous section.

Let C = {M'|i=1,2,---n} be the set of all inequivalent V-modules. Note that all

M are strong V-modules. Consider an N-algebra A = @I N M formally spanned by C
equipped with a product

Mi><Mj=zn:]\7-k~-]\4"C where NF ':dim( M ) (3.7.3)

2 y , s MM 7.
Then A is called the fusion algebra or Verlinde algebra of V. The coeflicient Ni’} is often
referred to as the fusion rule (of type M* x M’/ — M*). It follows from definition that

the fusion rule (3.7.3) coincides with the irreducible decomposition of a fusion product:

n n k
i i k\ONE k M :
MRy M7 ~ @ (M*)*Ns ~ k@M ® (Mi Mj)v (linearly).

k=1

By Proposition 3.7.1, the fusion algebra is always commutative. By Lemma 2.4.3, there
is a canonical isomorphism (VM]CU)V ~ Homy (M*, M7) so that V' x M* = M*. Namely, V
is a unit element in the fusion algebra.

Recently, the associativity of fusion products was established in [H1]-[H4] (see also
[DLM4]), if V' is rational, Cy-cofinite and of CFT-type:

Theorem 3.7.5. Assume that V is rational Cy-cofinite VOA of CFT-type.

(1) (Associativity) Let I'(-, z) and I*(-, z) be V -intertwining operators of types M* x M* —
M3 and M?* x M3 — M?*, respectively, where M', i = 1,...,5, are arbitrary strong V -
modules. Then there exists a strong V-module M® and V -intertwining operators J'(-, 2)
and J?(-,2) of types MY x M3 — M5 and M' x M? — M?S, respectively, such that the
following equality holds for any v* € M* fori=1,2,3 and v € (M®)*:

<V7 Il (Ulv 21)[2<U2, 22)03> = <V7 Jl(’]2<vlv ZO)U2> 22)U3>|20=Z1*Z27

where the left hand side and the right hand side of the above equality converge in the
domain |z1| > |z2| > 0 and |za] > |z0| > 0, respectively, for any choices of log z1, log zo
and log(z1 — 2) in the definition of 2" = €'°8* for r € R, and the equality above means
that the left hand side and the right hand side are analytic extensions of each other.

(2) The assertion (1) still holds if we exchange the role of I'(-,2),I*(-,z) and that of
JU 2), J2(, 2).

(3) (Commutativity) Let I'(-,z) and I*(-,z) be V-intertwining operators of type W' x
W4 — W? and W? x W3 — W*, respectively, where W, i =1,....5 are arbitrary strong
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V-modules. Then there exist a strong V-module W and V -intertwining operators J*(-, z)
and J*(-,z) of types W2 x W6 — W?® and W' x W3 — WP, respectively, such that the

multivalued analytic function
(v, 'V, 2)) (V2 22)0°)

of z1 and zy in the region |z1| > |zo| > 0 and the multivalued analytic function
(v, J' (v, 2) J* (v*, 21)v®)

of z1 and zy in the region |za| > |z1| > 0 are analytic extensions of each other.
(4) For any strong V-modules N*, i = 1,2,3, the space of V -intertwining operators of
type N* x N? — N3 is finite dimensional.

Corollary 3.7.6. IfV is rational Cs-cofinite VOA of CFT-type, then the associated fusion

algebra is a finite dimensional commutative associative N-algebra with a unit V.

3.8 Coset construction

In this section we consider the coset construction of vertex operator algebras.

Let (V,Yv (-, 2),1y,wy) be a VOA with central charge cy. A vector e € V is called
a conformal vector with central charge c. if its component operators L¢(n), n € Z, of
Yyv(e, z) = 3,c L9(n)z"""2 defines a representation of the Virasoro algebra on V' with

central charge c.:

m3—m

[L5(m), L (n)] = (m = n)L(m + n) + G0 =5 Ce-

A graded subspace U = @,>0U,, of V, where U,, = U NV, is said to be a sub VOA of
V if 1y € U and there is a conformal vector wy € U, such that (U, Yy (-, 2)|v, Iv,wy)
satisfies all the axioms of a VOA. We simply write (U, e) for (U, Yy (-, 2)|v, 1y, e). For a
sub VOA (U, e), we want to its commutant subalgebra. Before we give the definition of

the commutant subalgebra, we prove the following lemmas.
Lemma 3.8.1. Fora,b eV, [Yy(a, 2),Yv (b, 2)] = 0 if and only if axb =0 for all i > 0.

Proof: The equation [Yy (a, z), Yy (b, 2)] = 0 asserts that the order of locality of a
and b is less than or equal to 0. So the assertion is obvious from Section 3.3. 1

Lemma 3.8.2. For a subset S of V', the subspace S® = {a € V | ayv = 0 for any v €
S, i >0} forms a subalgebra in V.
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Proof: The assertion immediately follows from the iterate formula

(amb)a) = Z(—W( ) {am-pba+s) — (=1)"b+i-pag) }-

=0 J

By the lemmas above, we define the commutant subalgebra of a sub VOA (U, e) by
Comy (U) :=={a €V | agv =0 for any v € U, i > 0}. (3.8.1)

However, the definition of the commutant subalgebra is completely determined only by

the Virasoro vector e of U as we will see below.
Proposition 3.8.3. Let (U,e) be a sub VOA of V. Then Comy (U) = Kerye(.

Proof: Let a € Comy(U). Then ega = egyanl = aemld = 0. Thus a €
Kerye). Conversely, let a € Kerye) and v € U. Then we can find an integer N such
that vi,ya = 0 for all n > N and vynv_1ya # 0. If N > 0, then eqgyvwa = vepa +
leoy; vnyla = —Nwvv_1ya = 0, which is a contradiction. So Yy (v, z)a € V([[z]]. Then by
the skew-symmetry we have Yy (b, 2)v = e*L(=DYy, (v, —2)b € V[[z]]. Thus bg;v = 0 for all
i > 0 and hence b € Comy (U). 1

Next, we consider the condition that wy — e defines a Virasoro vector of Comy (U). A
decomposition wy = w! + w? of the Virasoro element of V' is called orthogonal if both w*
and w? are conformal vectors and their component operators are mutually commutative,
ie., [Y(w! 21),Y(w? 29)] = 0. Given a conformal vector e, we can verify whether wy =

e + (wy — e) is orthogonal or not by the following lemma:

Lemma 3.8.4. (|FZ, Theorem 5.1]) Assume that V' is of CFT-type. Then for a conformal
vector e € V, wy = e+ (wy — e) is orthogonal if and only if (wy)@ye = 0.

Proof: By the L(—1)-derivation property we have wgye = €(_2)1. On the other hand,
ee = 6(0)6(_1)]1 = Le(—l)Le<—2)]1 = Le(—Q)Le(—D]l + Le(—?))]l = 6(_1)6(0)]1 + 6(_2)11 =
e(—21. Note that e,y = L°(n — 1) and a,y)1 = 0 for any ¢ € V and n > 0. Thus
(wy — e)e = 0. Since (wy)aye = eme = 2¢, (wy — e)qye = 0. By assumption,
(wy —e)ge = 0. As V is of CFT-type, we have (wy —e)3e € Cl and (wy — e)mye =0
for n > 4. Then by the skew-symmetry formula

o (_1)n+i+1 .
amb =) — L= b,
i=0 '
we have eq)(wy —e) = 3 c;c5(=1) L(=1)"(wy —e)@e/i! = 0. Thus wy —e € Comy (e).
1
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Proposition 3.8.5. Let wy = e + (wy — e) is an orthogonal decomposition. Then
(i) (Keryeqy,wy —e) is a sub VOA of V.

(1) Kerye( is a unique mazimal sub VOA of V whose Virasoro vector is wy — e.

Proof: (i): We have shown that Kerye) is a subalgebra of V. It is clear that
1y € Kerye) and wy — e € Kerye. So we have to prove that wy — e is a Virasoro
vector of Keryeq). Let a € Keryegy. Then ega = 0 so that we have the L(—1)-
derivation: Yy ((wy — €)@, 2) = Yv((wv )o@, 2) = 0.Yy(a,z). Since eqya = 0, we have
(wy — e)mya = (wy)aya so that (wy — )y acts on Kerye() semisimply with a graded
decomposition Kerye) = @nez(Keryee) NV,). Thus, wy — e is the Virasoro vector of
Kerye().

(ii): Let (W,wy — e) be a sub VOA of V. For each & € W, we have Yy (e, 2) =
Yv ((wv) oz, 2) + Yy ((wy —e) oy, 2) = 0.Yv(x, 2) — 0.Yy(x, 2z) = 0. In particular, ez =

Res.Yv (e, )1y = 0. Thus € Kerye) and M is a subalgebra of Keryeq).

By this proposition, if we have an orthogonal decomposition wy = w! + w?, then we
have a two mutually commuting sub VOAs U' = (Kerywf, w') and U? = (Kerywy,, w?).
Denote by T the subalgebra generated by U! and U2 If V is of CFT-type, then all of
U, U?, U'®c U? and T are of CFT-type. It is easy to see that a linear map U ®¢c U? 2
a®br a—yb € T is a VOA-epimorphism as a(_1)b = b_ya. However, this epimorphism
is not isomorphism in general. Here we give an example. Let V! and V2 be VOAs such
that both of then are not simple. Then we can take proper ideals I* of V* for i = 1,2.
Then I'® I? is a proper ideal of V! ®¢ V? which does not contain neither V! nor V2.
Then by setting V = V!@c V?/I'®@c ?, U' = V! and U? = V2 we have an exact
sequence:

0—>Il(§12—>U1(§U2—>V:T—>O.

However, if one of U?, i = 1,2, is simple, then the epimorphism is actually isomorphism:

Lemma 3.8.6. Let V be a VOA and let V', V2 be two sub VOAs of V such that V! and
V2 generate V and [Yy(a', z1),Yv(a?, 22)] = 0 for any a* € V', i = 1,2. Suppose that V'
is simple. Then V is isomorphic to V! @c V2.

Proof: As we have seen, a linear map V?®@V? 3 a®b +— a_1)b € V is an epimor-
phism. Assume that this is not injective. In this case, since V! @ V? as a V'-module is
isomorphic to a direct sum of copies of V' and V! is an irreducible V*-module, the ker-
nel of the above epimorphism contains a non-zero element of the form 1®a € V! @ V2.

However, we have 1®a — 1_jja = a # 0, a contradiction. Thus V is isomorphic to
vl ® V2' 1
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Remark 3.8.7. If both V and V! are simple, then it is very likely to happen that V? is
also simple. In fact, this is true in many (almost all known) examples. However, there is

no systematic theory on this point.

By this lemma, if one of U?, i = 1,2, is simple, then V has a sub VOA isomorphic to
U ® U? whose Virasoro vector is the same as that of V. In this case, the pair (U, U?) is
often called a commutant pair. For a sub VOA V! of V| the association V! ~» Comy (V1)
is called the commutant construction or coset construction. Many important VOAs are
constructed by the coset construction. One of the most famous examples is the GKO-
construction [GKO] of the unitary Virasoro VOAs. We will consider this topic later.

Intertwining operators for sub VOAs. We consider a relation with vertex operator
map and intertwining operators for sub VOAs. Let (U, e) be a sub VOA of (V,w).

Lemma 3.8.8. We have (w — e)yu = 0 and [ugm), (w —e)q)] = 0 for all w € U and
m € Z.

Proof: Let u € U. Since e is the Virasoro vector of U, we have egyu = 11 and
thus (w — e)yu = weyu — epu = w21 — u—9»1 = 0. By the definition of a sub VOA,
we have wqyu = eqyu. Then by the commutator formula we have [(w — €)q), U] =

((w — 6)(0)u)(m+1) + ((w - 6)(1)u>(m) =0. ]

Let (M, Yy(+, 2)) be a strong V-module. Assume that M as a U-module is completely
reducible. Then we have a decomposition

M = @ W* @ Homy (W, M)
AeA

where {W?* | X € A} is the set of inequivalent irreducible U-submodules of M. Write
Yi(w,z) = >, L(n)z"""2 and Yy(e,z) = Y., ., L¢(n)z"""2 Since both L(0) and
L¢(0) acts on M diagonally and L(0) — L¢(0) acts on each Homy (W*, M) by Lemma
3.8.8, the space Homy (W?*, M) splits into a direct sum of eigenspaces for L(0) — L¢(0).
Therefore, 2/°(®) and 24(©~2°0) are well-defined operators on M. Let Ay = {v™® | a € Py}
be a linear basis of Homy (W*, M) consisting of eigenvectors for L(0) — L¢(0) for A € A.
Let Mo : M — W*®0v™® be a projection map. Clearly, 7y, is a U-homomorphism.
Define a linear map I4(, 2) of type W x W2 — W @027 by

I 5(a,2)b = T HOFLE Oy Vi (PO O @ prre 2), LO=LA0) i gy A2 (3.8.2)
for a € W and b € W2 v’ € Ay 0v*2F € A, and v € Ay,.

Proposition 3.8.9. The map ]gﬁ(~, 2) is a U-intertwining operator of type W x W2 —
W,
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Proof: Clearly, 1] (-, z) satisfies the lower truncated condition. Since Yy (-, 2) satis-

fies the Jacobi identity on M and L(0) — L(0) € Homy (W?*, M) for any A € A, I]4(-, 2)

also satisfies the Jacobi identity. By the term z*((0)~L%(0)

inserted as above, we can also
verify that I](-, 2) satisfies the L°(—1)-derivation property. Therefore, I (-, 2) satisfies

all the axioms for a U-intertwining operator. 1

Now assume that w = e+ (w—e) is an orthogonal decomposition. Then U* := Kery-e )
is a sub VOA with the Virasoro vector w—e ) by Proposition3.8.5. Therefore, V' contains
a sub VOA U ®U*®. Since the action of U¢ on M commutes with that of U on M, U®
naturally acts on each space Homy(W?*, M). Namely, Homy(W?*, M) are U-modules
for all A € A. For simplicity, we set (W*)¢ := Homy(W*, M) and M* := W*@(W?*)e.
Then M? is a U ® U®-submodule of M and M as a U ® U°-module has a decomposition
M = @reaM?. Set 7\ = HaeAA Taq- Then my is a projection map from M to M?* and
s0 is a U ® U2 -homomorphism. Therefore, my,Yy/(+, 2) restricted on M* @ M*2 defines

a U ® U*-intertwining operator of type
W/\1 ®(W}\1)C X W)\Q ®(W}\2)C N W}\'g, ®<W/\3>C.

Therefore, the fusion rules for U-modules partially determine the V-module structure
on M. If both U and U¢ are rational, then by Corollary 13.5.10 we have the following

isomorphism:

W)\g ® (W/\g)c N W)\g ®(W}\3)C
W/\l W/\Q U (W)\l)c (W)\Q)c e - W)\l ®(W>\1) W>\2 ®(W)\2>c U®Uc‘
However, it is usually a difficult problem to show that the commutant U¢ of U is rational

even if both V' and U are rational. But the following theorem says that if U is rational

then we always have the isomorphism as follows.

Theorem 3.8.10. ([ADL, Theorem 2.10]) Let U*, i = 1,2, be VOAs. Let W, i =1,2,3,
be U'-modules on which L*(0) acts semisimply and let X', i = 1,2,3, be U?-modules on
which L*(0) acts semisimply, where L*(0) and L*(0) are the grade-keeping operators of the

Virasoro vectors of U' and U?, respectively. If the fusion rules dim (WYV;,Q)Ul 1s finite,

then the following linear isomorphism holds:
(we),.2 (), = (o o)
WEWw2) o, \XPX2) , \WIX!W2RX2) g

3.9 Quantum Galois theory

In this section we review the theory of the quantum Galois theory, one of the most
beautiful results on vertex operator algebras.
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Let V' be a simple VOA and G a finite subgroup of Aut(V). Then the fixed point
subalgebra V¢ := {a € V | ga = a for any g € G} is called the G-orbifold subalgebra
or simply orbifold of V. The study of V¢ was initiated in [DVVV] in physical point of
view and was begun by [DM1] in mathematical point of view. Let Irr(G) be the set of all
inequivalent characters of G. For each x € Irr(G), we fix an irreducible C[G]-module M,
affording the character y. Then we have a decomposition

V= M,®Homa(M,,V).
Xx€Irr(G)
Set V. := Homg(M,, V). Wenote V& =V, for the principal character 1¢ € Irr(G). Each
V, is a V%module since C[G] commutes with V¢. Thus V is a module of C[G] ®¢ V.
The following Schur-Weyl type duality theorem is shown in [DMI] and [DLM3].

Theorem 3.9.1. With reference to the above setting, we have:

(1) For each x € Irr(G), V, # 0.

(2) ALV, x € Irr(G), are irreducible VE-modules. In particular, V¢ is a simple VOA.
(3) Vs ~V, as VE€-modules if and only if My ~ M, as C|G]-modules.

By this theorem, we see that C[G] and V¢ forms a dual pair on V. Moreover, by
using the theorem above, we can derive the following Galois correspondence established
in [HMT]:

Theorem 3.9.2. (Quantum Galois theorem) Assume that V' is a simple VOA. Let ® :
H +— VH be the map which associates to a subgroup H of G the sub VOA VH of V.. Then

® induces a bijection between the subgroups of G and the sub VOAs of V' which contains
Ve,

By theorem 3.9.1/ and 13.9.2), the representation of the group G plays an important role
to study V as a V%-module.

There is a generalization of Theorem 3.9.1/ for modules. Let g, h € G. For a g-twisted
V-module (M, Yy (-, 2)), we can define another module structure. Define the h-conjugate
vertex operator Y1 (-, z) by

Yi(a,z) = Yu(ha, 2).

Then one can easily check that (M, Y] (-, 2)) is an h™!gh-twisted V-module. We usually
denote (M, Y} (-, z)) by M o h for short. It is obvious that if M is irreducible then so is
Moh, and if g and h commutes, then M oh is again a g-twisted V-module. If M oh ~ M,
then M is refereed to as h-stable. This is equivalent to the condition that there is a V-
isomorphism ¢(h) : M — M such that ¢(h)Yy(a,2)v = Yy (ha, z)p(h)v for all a € V
and v € M. The linear isomorphism ¢(h) is called h-stabilizing automorphism. If M is
irreducible, then the stabilizing automorphism is unique up to linearity.
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Now consider the case g = h = 1. As we explained, there is an action of G on the set
of equivalent classes of irreducible V-modules. Take an orbit M. Then for M, M? € M,
there is ¢ € G such that M!' o g ~ M?. Consider a direct sum ®pepM. Then as a
generalization of Theorem 3.9.1, the following theorem has been established in [DY]:

Theorem 3.9.3. For each G-orbit M, there is a central extensionl — C — G — G — 1
and an action ofé on Brrem M which extends certain linear representation of the central

component C of G. Moreover, under the action above, VG®(C[CNJ] forms a dual pair on
SrremM.

To describe the central extension G and the action of C[é] on ®pepmM precisely,
we have to introduce the twisted associative algebra A, (G, M) as in [DY], where X is a
suitable 2-cocycle on G. We leave the accurate definition of them to [DY]. The twisted
algebra A, (G, M) is refereed to as generalized twisted double in [DY], and we will find
some representations of the twisted algebras in the theory of simple current extensions of
vertex operator algebras.

Remark 3.9.4. Theorem 3.9.3 has been generalized to include twisted modules in [MT].



Chapter 4

Simple Current Extensions of Vertex
Operator Algebras

In this chapter we study a theory of simple current extensions of vertex operator algebras.
First, we briefly consider how a vertex operator algebra is extended to a larger algebra
with suitable grading. Let (V, Yy (+, z), 1y, wy ) be a vertex operator algebra. An extension
of V' is a vertex operator (super)algebra (W, Yy (-, 2), Iy, ww ) such that (V,wy) is a sub
VOA of W with 1y, = 1y and wy = wy. Assume that there is an extension W = @, c s W*
of V graded by a monoid A such that W4 ~ V| where 14 is the unit element of A, and
W has an A-graded structure W< - W8 c W for a, 3 € A. Then by the skew-symmetry
we have aff = fa for any a, § € A and so A is a commutative monoid. Moreover, if W is
simple, then for each a € A there is a 3 € A such that W< - W9 = W4, Namely, A is an
abelian group. Thus, in the study of extensions of vertex operator algebras, extensions
graded by abelian groups come to play a central role. In the case where A is abelian and
W is a simple VOA, the duality in Theorem 3.9.1/implies all W<, o € A, are inequivalent
irreducible W'4 = V-modules as the fixed point subalgebra W4 is exactly equal to W'4.
And if we further assume that V' is rational, then there are finitely many inequivalent
irreducible V-modules so that A is a finite abelian group. By the argument above, we
have come to the following situation: V? is a simple and rational VOA and {V* | « € D}
is a set of irreducible V°-modules indexed by a finite abelian group D such that the direct
sum Vp = @aepV® forms a VOA with D-grading V< - V# C V8. In the following, we
study such an extension Vp.

4.1 Simple currents

Let V be a rational VOA. Then the fusion product M! K, M? exists and determined
uniquely up to isomorphism for any two (strong) V-modules M!' and M?2. It is shown
in Theorem 13.6.3/ that there are finitely many inequivalent irreducible V-modules. Let

o1
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{W'"]i=1,...,N} be the set of all inequivalent irreducible V-module. Denote by Ni’;-
the fusion rule of type W x W7 — W*_ that is, the dimension of V-intertwining operators
of type Wi x WJ — W*. Then by definition we have

il Wk al
i i~ k ~ k\&NE
W' Ry W~ W %(Wi Wj)v_@(W) .
k=1

k=1

Definition 4.1.1. A strong V-module U is called simple current if U Ky W is not zero
and irreducible for every irreducible V-module W.

By definition, we can easily verify that every simple current module is irreducible.
The following simple lemma is useful to determine whether a module is a simple current

or not:

Lemma 4.1.2. Assume that the fusion algebra for V' is associative. If two V-modules U
and X satisfy the equality U x X =V in the fusion algebra for V', the both U and X are
wrreductble and simple currents.

Proof: Clearly, both U and X are not zero. Decompose U into a direct sum U =
®;U® of irreducible V-modules. Then U x X = V implies that there is an irreducible
component U such that UD x X = §;;,)V. Then U =V x U = (U x X)x U = Ul0) x
(Ux X)=Ul0) xV =0 Thus U = U%) % 0 and U is irreducible. Symmetrically,
X is also irreducible. Now let W be an irreducible V-module. Then U x W # 0 because
XXx(UxW)=(XxU)xW=VxW=W. If UxW is not irreducible, then so is
X x (U x W). However, X x (Ux W) = (X xU)xW =V xW =W is irreducible,
U x W is not zero and must be irreducible. Thus U is a simple current. Similarly, X is

also a simple current. 1

Remark 4.1.3. If V is Cs-cofinite and of CFT-type, then the fusion algebra for V is

associative so that we can apply the lemma above.

4.2 Simple current extensions

Let V? be a simple rational VOA and D a finite abelian group. Let {V* | a € D} be a
set of irreducible V%-modules indexed by D.

Lemma 4.2.1. Assume that a direct sum @ocpV'® carries a structure of a VOA such
that 0 # Vo - VP C VetB. It is simple if and only if all VY, a € D, are inequivalent

irreducible V°-modules.
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Proof: Assume that Vp is simple. Then the automorphism group of Vp contains a
group isomorphic to the dual group D* of an abelian group D because Vp is D-graded.
It is clear that the D*-invariants of Vp is exactly V°. Therefore, by Theorem 3.9.1, each
V' is an irreducible V°-modules.

Conversely, if {V* | a € D} is a set of inequivalent irreducible V%-modules such that
Vp = ®aecpV® forms a D-graded vertex operator algebra, then Vp must be simple because
of the density theorem. 1

By the lemma above, we introduce the following definition.

Definition 4.2.2. A D-graded extension Vp of V is a simple VOA with the shape
Vb = @aepV® whose vacuum element and Virasoro element are given by those of V° and
vertex operations in Vp satisfies Y (u®, 2)v® € Vo+8((2)) for any u® € V* and v* € V7.

By the following lemma we can obtain a uniqueness of VOA-structure of a D-graded

extension.

Proposition 4.2.3. ([DMS3, Proposition 5.3]) Suppose that the space of V°-intertwining
operators of type VO x VB — Vot is one dimensional. Then the VOA structure of a

D-graded extension Vp of VO over C is unique.

Proof: Assume that we have two vertex operator maps Y!(-,z) and Y?(-,2) on
DaecpV @ such that both of them provide D-graded extensions of V°. Then by assumption
there are non-zero scalars c(a, 3) € C such that Y2(z%, 2)2” = c(a, B)Y (22, 2)2® for any
e Ve 2P € VA Since Yi(1,2) = idy,, for i = 1,2, ¢(0,a) = 1 for all « € D. By the
skew-symmetry, we have ¢(«, ) = ¢(f3, «). Moreover, by the commutativity

(21 — 2)M Y (2, 2) Y (2P, 29)2" = (21 — 20)MY (2P, 2) Y (2%, 21 )2”
and the associativity
(20 4+ 22) M2 Y (2, 2 + 22) Y (2P, 29)27 = (20 + 20) MY (Y (2%, 20)2”, 20)27,
we have the following relations:

(o, B+7)e(B,7) = (B, a+ y)ela, 7) = cla, B)e(a+ 5, 7).

Namely, c(-,-) € H?(D,C*) and hence defines an abelian central extension of D by C.
Since D is a direct sum of finite cyclic groups and C is algebraically closed, such an exten-
sion splits by Theorem 3.2 of [Kar]. This means that there exists a coboundary ¢t : D — C*
such that c(a, ) = t(a)t(8)/t(a+ B) for all o, 3 € D. Now define a linear map 1 from
(Vp, Y1(-,2)) to (Vp,Y?(-, 2)) by ¥(z%) = t(a)x® for 2* € V. Then Y (2%, 2)z” = t(a+
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Bz, 2)2? = cla, B)t(a + B)Y2(x%, 2)2’ = t(a)t(B)Y?3(2®, 2)a’ = Y2(Ya®, 2)vaP.

Therefore, 1 defines an isomorphism between two vertex operator algebra structures

(Vp,Y1(-,2)) and (Vp, Y?(-, 2)). 1
Now we present a definition of simple current extensions.

Definition 4.2.4. A D-graded extension Vp = @,epV® is said to be a D-graded simple

current extension if all V', o € D, are simple current V°-modules.

The VOA structure of a simple current extension is unique over C by Proposition
4.2.3. But it is usually a difficult problem to determine whether a module is a simple

current or not. On this problem, We can use Lemma 4.1.2.

Proposition 4.2.5. Let V° be a simple rational Cy-cofinite VOA of CFT-type, and let
Vb = ®oV® be a D-graded extension of VO. If we have the fusion rules V® x V8 = yoth
for all a, 3 € D, then Vp is a D-graded simple current extension of V.

Proof: By Corollary [3.7.6, the fusion algebra for V? is associative. Then the asser-
tion directly follows from Lemma 4.1.2. 1

Next we introduce a notion of equivalent extensions. Let ¢ be an automorphism of
V0 and denote by (V)9 the o-conjugate V%-module of V* for a € D. If we have a D-
graded extension Vp = @aepV® of VO, then we can construct another D-graded extension
(VD)7 = @aep(V)? in the following way. By definition, there exist linear isomorphisms
Qo o V¥ — (V)7 such that Y{yeys(a, 2)pa = @aYve(oa,z) for all a € V. For a € V©
and b € VP, define the vertex operation in (Vp)? = @aep(V*)? by

Yivp)e (9at, 2)@pb = patpYvy(a, 2)b.

Since Y{v,)e (-, 2)|(vayox(vey 18 a VO-intertwining operator of type (V)7 x (VF)7 —
(VotByr ((Vp)?, Yvp)e (-, 2)) also forms a D-graded extension of V°. Moreover, if Vp
is a D-graded simple current extension of V°, then so is (Vp)?. We call (Vp)? the o-
conjugate of Vp. It is clear from its construction that Vp and (Vp)? are isomorphic as
VOAs even if {V* | a € D} and {(V*)? | a € D} are distinct sets of inequivalent

V0% modules. Therefore, we introduce the following definition.

Definition 4.2.6. Two D-graded simple current extensions Vp = @,epV* and VD =
PBac Df/"‘ are said to be equivalent if there exists a VOA-isomorphism & : Vp — f/D such
that ®(V) =V for all a € D.

The following are clear from its definition.

Lemma 4.2.7. Let o be an automorphism of V°. Let Vp be a D-graded extension of
VO and (Vp)° the o-conjugate of Vp. Then the Vp and (Vp)° form equivalent D-graded

extensions of V°.
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Lemma 4.2.8. Suppose that Vp is a D-graded extension of V°. For an automorphism
o € Aut(V?), assume that there is an automorphism U on Vi such that ¥ (V°) =V and
Ulyo = 0. Then as sets of inequivalent irreducible V°-modules, {¥~'V* | a € D} and
{(V*)? | « € D} are the same.

Proof: Denote Yy, (-, z)|[yogve by Ya(:, z). By definition, we can take linear isomor-
phisms ¢, : V* — (V*)? such that Y{yae)s(a, 2)pa = @aYa(oa,z) for all a € V. Define
U, : UV — (V) by U, = @4 0 U|g-1«. Then for a € V° we have

Yvey (@, 2)Vs = Yvay(a, 2)pa ¥ = paYa(oa, 2)¥
= paYa(Va, 2)V = o, VY, (a, 2)|g-1ve = Yo Y, (a, 2)|g-1ya.

Therefore, U, is a V%isomorphisms. Hence, we get the assertion. 1
Conversely, we have the following lifting property which is due to Shimakura [Sh]:
Proposition 4.2.9. ([Sh]) Let Vp = ©aepV* be a D-graded simple current extension of
VO, If o € Aut(VO) satisfies {(V*)? | « € D} = {V* | a € D}, then there is a lifting
o € Aut(Vp) of o such that 5V° = VO and G|yo = o. This lifting is unique up to multiples

of D*.
Proof: Let ¢, : V* — (V)7 be a canonical linear isomorphism such that
Y(Vo‘)“<x07 Z)@a = PaYya (Uxoa z)

for all z° € V°. By assumption, there is a permutation p : D — D such that (V)7 ~ Vr()
as V% modules. Since all V®, o € D, are simple current V%modules, the permutation
satisfies the group homomorphism condition: p(a + ) = p(a) + p(B) for any «, [ €
D. Take a V%isomorphism v, : (V*)” = V*@ for each o € D and define a linear
isomorphism ® on Vp by ®|ye = 9, 0 v,. Let Yy, (-, z) be the vertex operator map on
Vp. We define a new vertex operator map on Vp by

Y (-, 2) =Yy, (0, 2)d.

Then (Vp,Y(+,2)) also forms a D-graded simple current extension of V°. Then by the
proof of Proposition 4.2.3, there is a 2-coboundary ¢ : D — C* such that
- tla+ B)
Y(,2) = —-—
2=
We may choose the coboundary t such that #(0) = 1. Now define a linear isomorphism P
on Vp by ®|ya = t(a)®|ye for o € D. Then by (4.2.1) we have

Yoo (-, 2). (4.2.1)

DYy, (2%, 2)2” = Yy, (B2, 2)Pa”

for any z® € V* and 2 € VP. Namely, ® € Aut(V)p). Since ®|yo = ¢! -idyo, the desired
automorphism is given by ®~!. The rest of the assertion is clear by Schur’s lemma 1
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4.3 Twisted algebra A)(D,Sw)

We keep the setup of Section 4.2. Let W be an irreducible V%-module. In this subsection
we describe a construction of the twisted algebra from W and V*, a € D. Since all V¢,
a € D, are simple current V%modules, all V* Xyo W, o € D, are also irreducible V°-
modules. By the results of Huang [H1] [H4], fusion products among V%-modules satisfy the
associativity. Therefore VX oW # 0 foralla € D and Dy := {a € D | V*KyoW ~ W}
forms a subgroup of D. Set Sy := D/Dy. Then Sy naturally admits an action of D.
By definition, Dy acts on Sy, trivially. Let s € Sy and take a representative o« € D such
that s = a+ Dyy. We should note that irreducible V%-modules VX0 W and V? Xy0 W
are isomorphic if and only if « — 3 € Dy,. Thus, the equivalent class of V< Kyo W is
independent of choice of a representative o in o + Dy, and hence determined uniquely.
So for each s € Sy, we define W* := V* Ko W after fixing a representative a € D such
that s = a + Dy .

Let a, 8,7 € D and s € Sy. It follows from the associativity of fusion products that
VR oWs = W5t where s+« denotes the action of & € D to s € Syy. Take basis I2(, 2)
of the 1-dimensional spaces of V% intertwining operators of type V® x W* — Wste By
an associative property of V%-intertwining operators (cf. [H1] [H4]), there are (non-zero)
scalars Ag(a, ) € C such that the following equality holds:

<V7 IsaJrﬂ(xa? Z1>I§(lﬂv 22)ws> = )‘S(a7 6) <V7 IsaJrﬁ(YVD (xav ZO)IB, Z2)ws> ’20221—227

where ¢ € V<, 28 € VP w*® € W* and v € (W*t*™F)*. We normalize intertwining
operators I2(-, z) to satisfy I°(1, z) = idys. In other words, I?(-, z) are vertex operators

on V%modules W*. By considering
<V/7 saJrﬂJr’y (170[7 ZI)IE-I—W(xﬁ’ ZQ)I;Y(x77 23)ws>7
we can deduce a relation

Asty (0, B)As(ar+ 8, 7) = As(, B+ 7)As(6,7)-

By the normalization I2(1, 2) = idys, the A,(+, -)’s above also satisfy a condition A4 (0, o) =
As(a,0) = 1 for all @ € D and s € Sy. Using As(«, 3), we introduce the twisted
algebra. Let ¢(s), s € Sw, be formal symbols and CSy := @ses,,Cq(s) a linear space
spanned by them. We define a multiplication on CSy by ¢(s) - q(t) := ds5.q(s). Then
CSy becomes a semisimple commutative associative algebra isomorphic to C®ISwl Let
U(CSw) = {> s, Hsq(s) | s € C*} be the set of units in CSyy. Then U(CSy) forms
a multiplicative group in CSy. Define an action of o € D on CSy by ¢(s)* := q(s — ).
Then U(CSy) is a multiplicative right D-module. Set A(a, 3) = > As(a, B)q(s) €

seSw 'S
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U(CSy ). Then A(-, ) defines a 2-cocycle D x D — U(CSy,) because it satisfies a 2-cocycle

condition

Ma,B3)7 - Ma+8,7) = Ma, B+7) - A8, 7).

Since the space of V-intertwining operators of type V¢ x W¢ — W**% is 1-dimensional,
)\ is unique up to 2-coboundaries. Namely, A defines an element of the second cohomology
group H?(D,U(CSw)). Let C[D] = @4epCe® be the group ring of D and set

A\D, Sw) = C[D] @ CSy = {Z Hose® ©q(s) | @ € D, s € Sw fias € c}
and define a multiplication % on Ay(D, Sw) by
e ®q(s) x e’ @q(t) = M(a, B) e P @q(s)” - q(t).

Then A)(D,Sw) equipped with the product * forms an associative algebra with the unit
clement Y° o €®®q(s). We call Ay(D,Sw) the twisted algebra associated to a pair
(D,Sw).

Remark 4.3.1. The algebra A,(D,Sw) is called the generalized twisted double in [DY].
It naturally appears in the orbifold theory, and has been studied in many papers. For
reference, see [DVVV] [DM3] [DY] [Mas].

Take an s € Sy and set C[D]®q(s) := BacpCe®®q(s). Then C[D]®q(s) is a
subalgebra of Ay(D,Sw). It has a subalgebra C[Dw]® q(s) := @acpy,, Ce® ® ¢(s) which
is isomorphic to the twisted group algebra C*s[Dy| of Dy associated to a 2-cocycle
As(,)7' € Z2(Dw,C). There is a one-to-one correspondence between the category of
C*s[Dy]-modules and the category of A, (D, Sy )-modules given as below:

Theorem 4.3.2. ([Mas] [DY, Theorem 3.5]) The functors

md% PS5 . A e CM[Dy]-Mod  — C[D]®q(s) ® M € A\(D, Sw)-Mod,

C*s [Dw]
ClDw]®q(s)
Redg 2 (o) N € A\(D,Sw)-Mod = ¢ ®¢(s)N € C[Dy]-Mod

define equivalences between the module categories C*s[Dy/|-Mod and Ay(D, Sw)-Mod. In
particular, Ax(D,Sw) is a semisimple algebra.

4.4 Representation theory

We keep the setup of the previous section. In this section we study Vp-modules.
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4.4.1 Untwisted modules

Let M be an indecomposable Vp-module. Since V? is regular, we can find an irreducible
VO-submodule W of M. We use the same notation for Dy, Sy, Ax(D,Sw) and C*[Dy/]
as previously. We should note that the definition of Dy, is independent of the choice of
an irreducible component W. One can show the following.

Lemma 4.4.1. ALV - W ={) a,w |a € V*weWnelZl}, ac D, are non-trivial
irreducible V°-submodules of M.

Proof: Recall the associativity and the commutativity of vertex operators. Let x,y
be any elements in a VOA and v be any element in a module. Then there exist Ny, Ny € N
such that

(Zl - Z2)N1Y($a ZI)Y(ya 2’2)” = (21 - ZQ)le(% Zz)Y(I7 Zl)”;
(20 + 22)MY (2, 20 + 22)Y (y, 22)v = (22 + 20) VY (Y (2, 20)y, 22).

The first equality is called the commutativity and the second is called the associativity of
vertex operators. An integer N7 depends on x and y, whereas N, does not only on x and
y but also on v. Using the associativity, we can show that V- (V2. W) C (Ve.V8). W =
VetB . W. In particular, all V- W, a € D, are V°-submodules. We show that V. W
is not zero and then we prove that it is irreducible. If V- W = 0, then by the iterate

formula
- if ™M m
(agmb)m = Y_(=1) ( ; ){am—z’)b(nﬂ') = (=1)"bnin—iae
i=0
we obtain V.- W =0 forn =1,2,.... But D is a finite abelian, we arrive at V- W = 0,

a contradiction. Therefore, V¢ - W # 0 for all & € D. Next, assume that there exists a
proper non-trivial V%-submodule X in V*-W. Then we have V- X Cc V- (V*-W) C
(V=2 V). W =V?. W =W and hence we get V=% X = W because W is irreducible.
Then we obtain V- W =V*. (V-*.X)C (V*- V™). X =V X = X, a contradiction.
Therefore, V- W is a non-trivial and irreducible V°-submodule of M. 1

Remark 4.4.2. We note that in the proof above we do not use the condition that V¢ are

simple currents. Thus Lemma 4.4.1 is true even if V}p is just a D-graded extension.

Let D = ||'_,(t" + Dw) be a coset decomposition of D with respect to Dy,. Set
Vowtti = @aeDWVO‘“i. Then Vp,, forms a sub VOA of Vp, which is a Dy-graded
simple current extension of VY, and Vp = @ ,Vp,, s forms a D/Dy-graded simple
current extension of Vp,,,. As we have assumed that M is an indecomposable Vp-module,
every irreducible V°-submodule is isomorphic to one of V' Ry W,i=1,...,n.
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Remark 4.4.3. Let Mp,, i be the sum of all irreducible V°-submodules of M isomorphic
to V* X0 W. Then we have the following decomposition of M into a direct sum of
isotypical V9-components with a D /Dy -grading:

n
M =@ Mpy, v, Voo - Mpysw = Mpy, oo

t=1

In particular, if M is irreducible under Vp, then each Mp,, 4 is an irreducible Vp,, -
module. Thus, viewing Vp as a D/Dy-graded simple current extension of Vp,,,, we can
regard M as a D/Dy-stable Vp-module (for the D/Dy/-stability, see Definition 4.2.8
below).

For each s € Sy, we set W*® = V* Kyo W by abuse of notation (because it is well-
defined). Since all V¥ «a € D, are simple current V°-modules, there are unique V°-
intertwining operators I¢(-,z) of type V* x W — Wt up to scalar multiples. We
choose I2(-,2) to satisfy the condition I(1,2) = idys, i.e., I2(-,z) defines the vertex
operator on a V%module W* for each s € Sy. Then, by Huang [H1] [H4|, there exist
scalars As(cv, ) € C such that

<V7 [;lJrﬁ(xa? Zl)Isﬂ(x,Ba 22)w> = /\8(a7 ﬁ) <V> [sa+ﬁ(YVD (xa7 Zo)lﬂv 22)w>|zo=217227 (4'4'1)

where 2% € V¥, 2% € VP w € W* and v € (W*+t**#)*. Then by the same procedure as
in the previous section, we can find the 2-cocycle A(-,-) € H*(D,U(CSy/)) and construct
the twisted algebra A,(D,Sw). By assumption, M is a direct sum of some copies of
Ws, s € Sy, as a V%-modules so that we have M =~ @®cs, W* @ Homyo(W?, M). Set
U® := Homyo(W?# M). Clearly, all of U*, s € Sy, are not zero because of Lemma 4.4.1.
On W*® U?, the vertex operator of x* € V¢ can be written as

YM(xa,Z>|Ws®Us = [f(xa,2)®¢s(a) (442)
with some ¢4(a) € Home (U, U*T®). Using (4.4.1) we can show that

¢s+ﬁ(a)¢s(ﬁ) = )‘s(a7 ﬁ)_lqbs(a + ﬁ)

and hence we can define an action of Ay(D,Sw) on @es,, U® by €* ® q(s) - pt 1= 05105 (a)
for p € U".

Lemma 4.4.4. Under the action above, @scs,, U® becomes an Ax(D,Sw)-module.
Then we have

Proposition 4.4.5. Suppose that M 1is irreducible under Vp. Then U?® is an irreducible
C*[Dw]-module for every s € Sy. Moreover, ®yes,,U® is an irreducible Ax(D,Sw)-

module.
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Proof: Since W*®U?® is an irreducible Vp,, -submodule of M, U® is an irreducible
C*+[Dy/]-module. Moreover, there is a canonical Ay(D, Sy )-homomorphism from P =
Ax(D,Sw) @cipw]@qs) UP = {C[D] @ q(5)} @cipy]@q(s) U 10 Dses,, U As

P = e ®q(s ® Us
tg? ( )(C[DW]®Q(S)
w

and is irreducible under Ay (D, Sy ) by Theorem 4.3.2, we see that U’ = €' ® ¢(s) @ U?
and hence P = @es,, U®. Consequently, @ses,, U? is also irreducible under Ay(D,Sw). 1

Corollary 4.4.6. If M is an irreducible Vp-module, then irreducible V°-components W*
and W' have the same multiplicity in M for all s,t € Syy.

Proof: Because U? and U! have the same dimension. ]

Theorem 4.4.7. Let V° be a rational Cy-cofinite vertex operator algebra of CFT-type, and
let Vp = @acpV® be a D-graded simple current extension of V°. Then an indecomposable
Vp-module M is completely reducible under Vp. Consequently, Vp is reqular. As a V°-
module, an irreducible Vp-submodule of M has the shape Gges,, W?* @ U® with each U® an
irreducible C[Dyw] ® q(s) ~ C*[Dy]-module for all s € Sy. Moreover, all Ut, t € Sy,
are determined by one of them, say U®, by the following rule:

- Ax(D,Sw) Ax(D,Sw)r7s
Ut ~ Red(cit[DWV}V Indcﬁs[DWV]V U?.

Proof: Since M = @yes,, W* @ Homyo (IW*, M) and the space @yes,, Homyo(W?*, M)
carries a structure of a module for a semisimple algebra A, (D, Sy ) by Proposition 4.4.5,
M is also a completely reducible Vp-module because of (4.4.2). Since VY is regular, all
Vp-modules are completely reducible. So Vp is also regular. Now assume that M is an
irreducible Vp-module. The decomposition is already shown. It remains to show that U? is
determined by U® by the rule as stated. It is shown in the proof of Proposition 4.4.5/ that
Ul = e ®q(s)@U?. Tt is easy to see that ¢! ®@q(s)@U* = Redéit([%fvv]‘/)lndéis(ﬁ)’fvv]‘/)Us.
The proof is completed. 1

By the theorem above and Theorem 4.3.2, the number of inequivalent irreducible Vp-
modules containing W as a V%-submodule is equal to dim¢ Z(C*[Dy]). In particular, if
Dy, = 0, then the structure of a Vp-module containing W is uniquely determined by its

V0-module structure. For convenience, we introduce the following notion.

Definition 4.4.8. An irreducible Vp-module N is said to be D-stable if Dy, = 0 for some
irreducible V%-submodule W.

It is obvious that the definition of the D-stability is independent of the choice of an
irreducible V°-submodule W. Let N, i = 1,2, 3, be irreducible D-stable Vp-modules, and
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let W be irreducible V°-submodules of N¢ for i = 1,2,3. Set W%® := VK0 Wi Then
Whe ~ W8 as VO-modules if and only if @ = 3, and N? as a V°-module is isomorphic
t0 @aecpWh™. We expect that the following lemma would be used in our future study.

Theorem 4.4.9. (The lifting property) Let N* = @ocpW be as above. Then for a
VO intertwining operator I(-,z) of type WH0 x W20 — W30 there is a Vp-intertwining
operator I(-,z) of type N' x N? — N3 such that the restriction of I(-,z) on W0 @ W20

is equal to I(-,z). In particular, we have the following isomorphism:

N3 W?”a
(Nl N2) = @ <W1,0 WQ,O) ’
Vb aeD Vo

In the abowve, (NijVQ)VD denotes the space of Vp-intertwining operators of type N' x N? —
N3.

Proof: It is obvious from Proposition 3.1.5/ that the above linear map is injective.
So we only have to prove the first assertion. By assumption, we have D-graded decom-
positions X = Goep X, W = @aepW* and T' = @epT'® such that all X W and T,
a € D, are irreducible V%submodules. By Theorem [3.7.5, there exist V°-intertwining
operators I*%(-, 2) and I%%(-, z) of type X* x W? — T and X% x W — T, respectively
such that

2_01<t*7 ]a,O(Y(ua’ ZO):L‘O, ZQ)w0>|zo z1-z2 = b1o <t Y(“ 21)1070(‘7”0’ 22)w0> (443>
and
Lﬁl (", Y (u®, zl)IO’O(xO, zg)w0> = Lgll (t, Io’a(xo, 29)Y (u®, zl)w0> (4.4.4)

because all V¢ are simple current V%-modules, where u® € V*, 2% ¢ X% w° € W?,
t* € T*, and 17y f(21, 22) denotes the formal power expansion of an analytic function
f(z1, 22) in the domain |2;| > |23 > 0 (cf. [FHL]). Then, again by Theorem [3.7.5, we can
find V% intertwining operators I*7(-, z) of type X x W# — T8 such that

L1_21 {t*, Y (u®, zl)lo’ﬁ(xo, ZQ)wﬁ> = Ly (t ]a”g(Y(ua, ZO)ZL‘O, zg)w5>|20:zl_z2. (4.4.5)

We claim that I(z®,2)w® = I*%(z*, 2)w’ defines a Vp-intertwining operator of type
X x W — T. We only need to show the associativity and the commutativity of I(-, z).
Let v# € VP and w? € W”. Then we have

Lo (8, Y (u®, 20) 1P (Y (07, 20)2°, 22)w7) 2=z 20

= 1 (1, Y (u®, 20)Y (09, 23) 1% (20, 25)w?)

= 1 (87 Y (Y (0, 2)07, 25) 1% (20, 22)w") ] 2ymzy -

= a0 (" IO (Y (Y (u, 2)07, 20)2°, 22)W7) Lsymay 2 202020
{t,

- L260 IOH—B 7( (uau ZG>Y(UB7 20)1’0, 22)Uﬂ> |Ze=21722,zo=23722
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and hence we obtain the following associativity:
{t*,Y (u®, 2) 177 (2, 2)w?) = (t*, 1P (Y (1™, 20)2°, 20)w") | gz 2 - (4.4.6)

Next we prove the commutativity of 1%#(-, 2). We have

UB Zo)xo z2)Y(ua Zl>w0>‘zo—z3—22

L201<t* [ﬂa( (
6 )[Oa ZL‘ 2 )
ﬁ

= L321< Y(v (u®, z1)w’)

= L312<t*a (v, 23)Y (u®, 20) 1% (2%, z0)w”)

= L132<t*,Y( 21)Y (07, 23) 19°(2°, 29)w")

= Lt Y (Y (u ,2a)07, 23) 1%0(2°, 22)w°) | imzy -
(

= L204 tr, PH_ﬂO( (Y (u® 724)7)6: ZO)an 22)w MNeo=z3—z0,za=21—2s
- L250<t*’ [a+ﬂ 0( (ua Z5)Y('Uﬁ7 Zo)$0, Zg)w(]) |Zo:Z3—22725:Z1—22
- L120<t*, Y(u ZI)IBO(Y(Uﬁ7 20)1707 ZQ)wO |20:Z3—Z2'

Thus, we get the following:
Y (u®, 2)IP0(2P, 2)w®) = (t*, IP(2”, 2,)Y (u®, 2 )w®). (4.4.7)

Then
Lo (5, Y (u®, 2)) 197 (2P, 20)Y (07, 23)w")

= L132<t* Y (u®, 21)Y (v7, 23)[’6’0(336a 22)w0>
= 1300 (1%, YV (Y (0, 20)07, 23) 17027, 20)w°) |y, 4
- L230 <t* I@aJﬂl(lﬁ: ZQ)Y(Y(UO{7 20)1)77 23)w0> |20:Z1—23

= L213<t* I59%7 (28 )Y (u®, 21)Y (0P, 23)w®)

and hence we arrive at the following commutativity:
{t*,Y (u®, 2) 177 (2P, 2)w?) = (t*, 1P (2P 25) Y (u®, 21)w?). (4.4.8)

This completes the proof of Lemma 5.1.12. 1

Remark 4.4.10. Let M be an irreducible Vp-module and W an irreducible V%-submodule
of M. Even if Dy # 0, we can apply Theorem 4.4.9 to M as follows. We may consider
Vp as a D/Dy-graded simple current extension of Vp,, as in Remark 4.4.3. Then we
can view M as a D/Dys-stable Vp-module. So by replacing D by D/Dy,, we can apply
Theorem 4.4.9 to M.

4.4.2 Twisted modules

Let ¢ be an automorphism on Vp such that V9 is contained in vf;’), the space of o-
invariants of Vp. Let VI be a subspace {a € Vp | oa = 2™/=1/l°lg} for each 0 < r <
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|o| — 1, where |o| is order of . Then Vl(f) are V%submodules of Vp so that there is a
partition D = |_|‘;|O_ ' D@ guch that V]gi) = Duep®V*. One can easily verify that DO ig
a subgroup of D and each D® is a coset of D with respect to D®. Namely, if VO C V1§0>,
then o is identified with an element of D*, the dual group of D. Conversely, it is clear
from definition that D* is a subgroup of Aut(Vp). Thus, we have

Lemma 4.4.11. An automorphism o € Aut(V) satisfies V° C Vj{” if and only if o € D*.

The lemma above tells us that an automorphism ¢ is consistent with the D-grading
of Vp if and only if o belongs to D*. We consider o-twisted Vp-modules. Let M be an
indecomposable admissible o-twisted Vp-module. By definition, there is a decomposition

lo|—-1

M= MY
i=0

such that V[()i) - MW c M), Tt is obvious that each M@ is a V%-module. Let W be
an irreducible V% submodule of M(© and let DW, Sw, Ax(D,Sw) and C*[Dy] be as
in Section 4.3. By replacing M by > .,V D - W if necessary, we may assume that all
Ve Ry W, a € Dy, are contained in M so that Dy is a subgroup of D). Since M is
a completely reducible V-module, we have the following decomposition:

M = @ W* @ Homyo(W*, M),
SESW
where we set W* := V*Kyo W for s € Sy by abuse of notation. Set U® := Homyo(W?*, M)
for s € Sy. As we did before, we can find a 2-cocycle A € H?(D,U(CSy)) and a
representation of A(D, Sy) on the space @yes,, U°. Thus, by the same argument, we can

show the following.

Theorem 4.4.12. Let 0 € D*(C Aut(Vp)). Viewing as a V°-module, an indecomposable
admissible o-twisted Vp-module M has the shape
M= w e
seSw
such that the space ®ges,, U® carries a structure of an Ax(D, Sw)-module. In particular,
M s a completely reducible Vp-module. If M is irreducible under Vp, then each U®, s €

Sw, is irreducible under C[Dw| ® q(s), and also Gses,, U® is irreducible under Ax(D, Sw).
Moreover, for each pair s and t € Sy, U® and U' are determined by the following rule:

A S A S s
U' = Red (5o Ind 2 U,

Hence, all W?#, s € Sy, have the same multiplicity in M.
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Remark 4.4.13. Since Dy C D we note that the decomposition above is a refinement
of the decomposition M = @jez/,zM .

By the theorem above, Vp is o-rational for all ¢ € D*. More precisely, we can prove
that Vp is o-regular, that is, every o-twisted Vp-module is completely reducible (cf. [Y2]).

Corollary 4.4.14. An extension Vp is o-reqular for all o € D*.

Proof: Let M be a o-twisted Vp-module. Take an irreducible V°-submodule W of
M, which is possible because V? is regular. Then Y aep VY- W is a o-twisted admissible

Vp-submodule. As we have shown that Vp is o-rational, ) Ve. W is a completely

a€eD
reducible Vp-module. Thus, M is a sum of irreducible Vp-submodules and hence M is a

direct sum of irreducible Vp-submodules. 1

4.5 Induced modules

Here we also keep the setup of Section 4.2 and 4.3 Let W be an irreducible V°-module.
We define the stabilizer Dy, the orbit space Sy, intertwining operators I$(-, z), where
a € D and s € Sy, the twisted algebra A, (D, Sy) and the twisted group ring C*+[Dyy] as
in Section 4.3. We set W* := VX0 W for s € Sy, as we did previously. Let h(s) be the
top weight of a V%-module W#, which is a rational number by Theorem 13.6.6. It follows
from definition that the powers of z in an intertwining operator I$(-, z) are contained in
h(a+ s) — h(s) + Z. We set x(a,s) := h(a+ s) — h(s) € Q. The following assertion is

crucial for us.

Lemma 4.5.1. The following hold for any o, 3 € D and s € Sy :
(i) x(a, 0+ s) = x(a,s) € Z; (i) x(a, B+ s) + x(B, s) — x(a+ f,5) € Z.
Proof: By Theorem 3.7.5, we have:

<V7 ]g+6(l.a’ zl)[sﬁ(xﬁ> Z2)w8> = ES(OZ, ﬁ) <V7 Isﬁ+a(lﬂv ZQ)ISOé(xaa Zl)ws>7 (451)
(v, Iy 5(2%, 20) I (2, 2a)w) = Al B) (v, I8P (Yo, (2%, 20)2”, 22) 0" sgmiy =20y (45.2)

where ¢ € V*, 2% € VP w® € W*, v € (Wstot8)* ¢, (a, B) is a suitable scalar in C*,
and the equals above mean that the left hand side and the right hand side are analytic
extensions of each other. Since all I$(-, z) are intertwining operators among modules
involving simple currents, we note that by the convergence property in [H1] [H4] the
right hand side of (4.5.2) has the form zX ™77 28 £, (20/25)|s—s, s, in the domain |zp| >
|21 — 22| > 0, where r and s are some integers and f;(z) is an analytic function on |z| < 1.

Therefore, we have
(21 — 22)™ (p, 12, g(x*, 20) 10 (2P, 25)w?)

4.5.3
= 68(a7 ﬁ)(zl - 22)N<:u7 [?_,’_5(1'5, ZZ)Isﬁ(Ia’ 22>w2> ( )
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in the domain |z;| > |z1 — 22| > 0, |22] > |21 — 22| > 0 for sufficiently large N. Since

7X@ [ (3% 2)w® contains only integral powers of z, both

o X O, I (2%, 2) L (0, z0)u)

and
T 2% N LN e )
contain only integral powers of z; and zy. Thus, by (4.5.1), (4.5.3) and the convergence

property in [H1] [H4], we obtain the following equality of the meromorphic functions:

(21— 2) g 2 MO Ny 0 (20, 20) 1D (2P, 20)w)

X(@9) x(Bus+a) | xlas) (@) x(Brsta)=x(5)

= (21— )Ves(a, B)iy 2 2

) (v, 1P (27, 20) IO (2%, 21 )w®).
Since the equality above holds for any choices of log z; and log z in the definitions of
27 = erl%e% and 25 = erlg=2 (cf. [H1] |[H4]), we have x(a,s) — x(a,s + 3) € Z and
X(B,s+a) —x(B,s) € Z. This proves (i). The proof of (ii) is similar. By (4.5.2) and the
convergence property in [H1] [H4], we obtain the following equality of the meromorphic

functions:

Ml ) g s T X T2 (0 )10, )

_ L2—0122—x(a+6,8)<y7 I9H8 (Y (2, 20)aP, 2)w®) - (22 + ZO)—x(a,s+ﬁ)Z;((aJrﬁ,S)—x(ﬁ’S)’20:21_22'
Again the equality holds for any choices of log(z; — z2) and log z; in the definitions of
(21 — 290)" = e"'8(1722) and 25 = erloe =2 (cf. [H1] [H4]). Since (20 + 20)" = 25(1 4+ 20/2)"
and (14 2)" = >, (7)2" is analytic in the domain |z < 1, we see that (o + 3,s) —
x(a, s+ B) — x(5, 33 € Z. This completes the proof of (ii). 1

By the lemma above, we find that x(«, s) + Z is independent of s € Sy. So we may
set x(a) := x(a,s) for « € D. Then by (ii) of Lemma [4.5.1 we find that x(-) satisfies
the homomorphism condition y(a + 3) +Z = x(a) + x(8) + Z. Since x(«) € Q, there
exists an n € N such that y defines a group homomorphism from D/Dy to Z/nZ =
{j/n+7Z|0<j<n-—1}. Itis clear that x naturally defines an element y of D* by
X(@) := e 2™V=Ix(®  Thus y gives rise to an element of Aut(Vp). In the following, we
will construct irreducible x-twisted Vp-modules which contain W as V°-submodules.

Take an s € Sy. Let ¢ be an irreducible representation of C*+[Dyy] on a space U. For

each t € Sy, set

b Ax(D,Sw) .. 1Ax(D,Sw)
U' .= Redcjt[DWV]V IndCQS[DWVT U.

Then each Ut t € Sy, is a C[Dy]-module and a direct sum @eg,, U naturally (and
uniquely) carries a structure of an irreducible A (D, Sy )-module. Set

Ind/2 (W, ) .= EH W e U*

SESwW
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and define the vertex operator Y (-, z) of Vp on Ind“ﬁ%(VV, ©) by
V(2% 2)w' @ pt = I (2, 2)w' @{e* @ q(t) - u'}
for 2% € V* and w' @ u* € W' @ U'. We prove
Theorem 4.5.2. (Ind}2 (W, ¢), Y (-, 2)) is an irreducible {-twisted Vp-module.

Proof: Since the powers of z in Y (2®, z) are contained in y(a) + Z, we only need
to show the commutativity and the y-twisted associativity of vertex operators. We use
a technique of generalized rational functions developed in [DL]. Let 2% € V¥, 27 € VA,
w'@u* € W*@U® and v € Ind“f%(W, ©)*. We note that 2 X [%(z% 2)w® € W+ ((2)).
For sufficiently large N € N, we have

(21 — 20)N 0 2 X 2 X ) Y (22, 20)V (2P, 20)w® @ )

= (2, — ZQ)NLI;Z;X(Q)Z;X(ﬂ)(V, 19, 5(x%, 20) 1P (2, 20)w*
{e*®q(s +P) - ("@q(s) - 1°)})

= (21— 2)Nuggyey MV, Iy (20, 20) I (2P, 22) I0(1, 25)w®
@{Ns(e, ) e @4q(s) - p°})

— L§415<23 _|_ Z4)_X(a)(23 + 25)_X(5)

(v, Mg, B) TP ((24 — 25)N Yo, (22, 24) Y, (2P 25)1, 23)w®
D{Ns(@, B) e @q(s) - 1)) [ssmar—zg, 522
= 13my (23 4+ 24) X (23 + 25) XO (1, T0HB (24 — 25) N Yy, (27, 25) Yo, (22, 24) 1, 23)w®
(eI @4(5) - 1N ermn v
= (21— 22) Mgz V2 M (0, A (8, ) UL (2%, 20) I8 (2, 20)I0(1, 25)w®
D{(As(B, a)e’ ®q(s + ) xe* @q(s)) - p1°})
= (21 — 2)N 12X X ) V(28 20)V (2, 21 )0 @ ).
Therefore, we get the commutativity. Similarly, we have
Vo XN X ) V(1 20) Y (2P 2)wd @ 1)
=i 2 N 12510 ) 100, 2w @{e @ (s + B) - (¢ @a(s) - )}
= 150 (, As(a, B) (22 + zo)_X(aHNzZ_X(ﬂ)]ngﬁ(YVD(xa, 20)2°, 23)w*
®{As(a, B) e P @ q(s) - 1) g=z1 -2

= U0 (1, (22 + 20) XN XDV (Ve (29, 20)27, 20)0° @ 1) sy -

Hence, we obtain the associativity. 1



4.6. EXTENSION PROPERTY 67

Suppose that a simple VOA V' and a finite group G acting on V' is given. Then the
G-invariants V¢ of V, called the G-orbifold of V, is also a simple VOA by [DMI]. It is
an important problem to classify the module category of V¢ in the orbifold conformal
field theory. It was conjectured in [DVVV] that every irreducible V%-module appears in
a g-twisted V-module for some g € G. In our case, V? is exactly the D*-invariants of the
extension Vp. By Theorem 4.5.2, we see that the conjecture is true for a pair (Vp, D*).

Theorem 4.5.3. Let VO be a rational, Cy-cofinite and CFT-type VOA, and D a finite
abelian group. Assume that Vp = @aepV® be a D-graded simple current extension of V°.
Then every irreducible V°-module W is contained in an irreducible o-twisted Vp-module

for some o € D*. Moreover, o is uniquely determined by W.

4.6 Extension property

At the last of this chapter, we present a useful theorem by which we can make a simple

current extension larger.

Theorem 4.6.1. (The extension property) Let V09 be a simple rational Cs-cofinite
VOA of CFT-type, and let Dy, Dy be finite abelian groups. Assume that we have a set of
inequivalent irreducible simple current VO -modules {V @) | (a, B) € D1@® Dy} with D@
Ds-graded fusion rules V(1551 &, 0) V@2:02) = (ertazbi+82) for any (aq, B1), (ag, B2) €
D1 @& D,. Further assume that all V(P (o, B) € Dy @ Do, have integral top weights
and we have Dy- and Dy-graded simple current extensions Vp, = @aeDlvm’O) and Vp, =
@BGDZV(O’@. Then Vp,ap, = @(a,meDl@DQV(“ﬁ) possesses a unique structure of a simple

vertex operator algebra as a Dy @ Dy-graded simple current extension of V(9)

Remark 4.6.2. If Dy = Zy = {0,1} and the Z,-graded space Vp, = V(0 @ VO ig 5
simple vertex operator superalgebra, then the following proof with suitable modifications
shows that Vp,ep, = B(apeman,V @? is a simple vertex operator superalgebra with

even part @aep, V@ and odd part Sgep, VY.

V .
V?&,o)‘/(o’ﬁ) = @aepr(a’ﬂ) has a unique

irreducible Vp,-module structure for any 3 € Dy by Theorem 4.5.2.

Proof: First, we note that Vp,gs := Ind

Claim. Vp, s v, Vb,ey = Vb,a(s++) for all 8,7 € Da.

Proof of Claim. By the assumption that Vp, is a simple vertex operator algebra, the
restriction of vertex operator map Yvo, (-,2) on VO @ V07 gives a VO intertwining
operator of type V% x V(0 — V(057 Since all of Vp,as, Vp,e, and VD@ 8++)
are D;-stable irreducible Vp,-modules, we can use Theorem 4.4.9 and hence obtain the

Vp,-intertwining operators of type Vp,as X Vp,ay — Vp,e(8+y) Which is the lifting of the
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vertex operator maps on Vp,. This completes the proof of Claim.

By the claim above, we can take the non-trivial Vp,-intertwining operator Iz (-, z) of
type Vp,ap X Vpiay — Vpie(g+ry) Which is the lifting of the vertex operator map on Vp,
for each (3,7 € Ds. By its construction it is normalized such that

Loy(1,2)27 =27, Is0(2”, 2)2° = eH VL 5(2°, 2)2” (4.6.1)

for all B8,y € Dq, 2° € Vp,as and 27 € Vp,g,. Now define a vertex operator map
Y(’Z) : VDl@DQ X VDlEBD2 - leEBDz by

Y (2%, 2)a? = I, 3(z*, 2)2”

for € Vp,aa, ¥° € Vp,ep. We claim that 37(,2) defines a vertex operator algebra
structure on Vp,ep,. By our normalization (4.6.1), Y(-, z) satisfies the axioms for the
vacuum vector, and since I, (-, 2) satisfies the L(—1)-derivation property, Y (-, z) also
satisfies the L(—1)-derivation property. Therefore, we only need to establish the mutually
commutativity for Y(-, z). In the following, we make it a rule that z(*# always denotes
an arbitrary element in V(*9 for any («, 8) € D; @ Dy. By Theorem 3.7.5 (cf. [H1] [H4]),

there exists a non-zero scalar A\, s, such that
(21 = 22)VY (209 2)Y (207, 2)al* = A 5(21 — 22)VY (207, 20)V (209, 2)a 09,

On the other hand, since Vp, forms a vertex operator algebra, Y (%), 2) and Y (27, 2)
are mutually local fields on Vp,. Since Y (2(*9), 2) and Y (2(®%), 2) are mutually local fields
on Vp,ap,, there is a positive integer N >> 0 such that

(21 — 20)N (20 — 23)N (25 — 20)NY (209 2)Y (2O ) (2(00)] 23)2(0)
= (21 — 20)V (2 — 23)N (25 — 20) VY (2(®0) 25) Y (2(© 1)}7(x(077 , 29)x(0:9)
= (21— 22)V (22 — 23)V (23 — 2) VY (20, )V (20, 29)Y (20D, 2)a®9)
= (21 — )V (22 — 23)V (25 — 2) VY (2O )V (200 2))Y (2(>0 ) 0.9)

Therefore, Ag g5 = 1¥ and hence Y (29, 2) and Y (2(®7), 2) are mutually local ficlds on
Vp,ep,. Now recall the n-th normal ordered product o,, defined in Section 3.2. By our
definition of Y (-, z), we have

V(@20 2) = V(209 2) 0, ¥ (2%, 2).

Then by Dong’s lemma, all ?(x(o"ﬁ),z), a € Dy, B € Dy, are mutually local fields on

Vibyen,. Therefore, (Vp,ap,, Y (-, 2)) carries a structure of a vertex operator algebra. It is

clear that Vp,¢p, is simple. Hence, Vp,ap, is a D1 @ Dy-graded simple current extension

of V0.0, 1
*In the case where Dy = Zy and Vp, is an SVOA as in Remark 4.6.2), the scalar A\, 1,1,5 will be —1.




Chapter 5

Examples of Simple Current
Extensions

We present examples of simple current extensions.

5.1 A theory of semisimple primary vectors

In this section we review a theory of semisimple primary vectors introduced by Li [Li0]
[Li4] [Li5]. Semisimple primary vectors have nice properties so that there are many appli-
cations, for example, simple current extensions of vertex operator algebra [Li0] [Li5] [Li8]
[IDLM5], abelian coset construction [Li9] and theta functions defined on vertex operator
algebras [Y2].

Definition 5.1.1. A vector h € V is called a semisimple primary vector if it satisfies the

followings.

(i) L(n)h = 6, 0h for n > 0,

(i) hayh = 0p1v1 for n > 0 with v € Q,
(iii) h(o) acts on V' semisimply.

In addition, if h(g) acts on V' with integral eigenvalues, then h is called integral and if h )
acts on V' with rational eigenvalues, then A is called rational.

For a semisimple primary vector h, we can associate the internal automorphism o(h) :=
e~ 2™V=1ho)  Since h(oy is a derivative operator, i.e., [h(o), a(n)] = (h(0)a)n) for any a € V,
n € Z, o(h) defines an element in Aut(V'). The automorphism o(h) is identical if and

only if A is integral. Using semisimple primary vectors, we can transform structures of a

69
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module. Define

& h:l:n)
E*(h, z) = Yo e 1.1
(h, 2) eXP< — > (5.1.1)
A(h, 2) == 2"OET(—h, —2). (5.1.2)

Lemma 5.1.2. (Lemma 2.15, 3.7, 3.8 in [Li(]) Let W', i = 1,2, 3, be V-modules on which
hqy acts semisimply and let 1(-,z) be an intertwining operator of type W' x W? — W?3.
Then the following identities hold:

A(h, z9)I(u', 20) = T(A(h, 29 + 20)ul, 20) A(h, 22),
I(E=(h,z1)u, 25) = E=(h,z1 + 20) E~ (—h, 20) I (u, 22)

Xz O Et(h, 25) (25 + 21)" O B+ (—h, 2 + z1),
E~(=h,z)I(u, ZQ)E_(h, z1) = I(A(h, 2o — 21)A(=h, 29)u, 23).

Proposition 5.1.3. ([Li0] [Li2]) Let h be a semisimple primary vector and (M, Yy (-, 2))
a V-module. Then (M, Yy (A(h, z)-,2)) is a o(h)-twisted V -module. Moreover, it is irre-
ducible if and only if M is irreducible. We will denote it simply by M.

By the proposition above, there exist a canonical linear isomorphism ¢ : M — M such
that Y (a, 2)¢ = ¢Yy (A(h, 2)a, z) for all a € V.

Proposition 5.1.4. Let h be an integral semisimple primary vector. Let W, i = 1,2, 3,
be irreducible V -modules on which hy acts semisimply and I(-, z) an intertwining operator
of type Wi xW? — W3. Take canonical linear isomorphisms ¢; : W — Vf/i, 1= 2,3, such
that Yyi(a, 2)¢; = ¢Yo.(A(h, 2)a, 2) for alla € V.. Then ¢3I(A(h, 2)-, 2)p5 " provides an
intertwining operator of type W1 x W2 — W3,

Since A(h, z2)A(=h,z) = A(0,z) = 1, the Delta operator A(h,z) defines a linear

isomorphism between ( and ( we By abuse of notation, we denote such

w3
wi W2)v Wi W?)v' N
an isomorphism by A(h, z). As a corollary of Proposition 5.1.4, We note that V' gives a

simple current V-module.

Corollary 5.1.5. Assume that h is an integral semisimple primary vector. Then V=
(V.Yv(A(h, 2)-, 2)) is a simple current V -module.

Proof: It is shown in Lemma 2.4.3 that V' x M = M for all V-module M. Then by
Proposition 5.1.4 we have V x M = M. 1

It is possible to construct a simple current extension of V' by V under the assumption
below.
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Assumption 5.1.6. We assume that V as a V-module is isomorphic to V and the con-
stant v (which is determined by h()h = 1) is an integer.

Let I(+, 2) be an intertwining operator of type W' x W? — W3 and u' € W* i =1,2.
Recall the transpose operator 'I(u?, z)u' := e/ (u!, €™~ 2)u? which is an intertwin-
ing operator of type W2 x Wl — W3,

Remark 5.1.7. There are two ways to define the transpose of (-, z) according to the choice
of square roots of unity, namely e*L-11(u?, eI z)ut. However, if all W' i =1,2,3, are
irreducible, then these two intertwining operators differ from the others only by scalar

multiples. Thus there is no essential difference between them.

Let 7 : V — ‘:/ be a V-isomorphism. Then we can obtain (non-zero) intertwining
operators of type Y10(-,2) : V x V — V and Y'(-,2) : V. x V — V by the following

symmetries.
V A(h,z) L~ transpose 10 f
Yi (- TN O i, VL -
<vv)9 V(,Z) (VV) (,Z)G Vv

A(h,z) v a1 11 V
o~ - s Y'Y ~ ~ .
<VV) (’Z)E(VV)

Set YO(,2) = Yo (-,2) € (,'3), ¥ = Yi(,2) € (V5), VO =V, and V! == V.
Define a vertex operato Y(-,2) on VU @ V1 by Y(a,2)b := Y¥(a,2)b for a € V' and
b€ Vi, Then (VP VI Y(,2),1

SVOA if v is odd.

,w) carries a structure of a VOA if v is even and an

Theorem 5.1.8. (Theorem 3.9 in [Li(]) (V ®V,Y (-, 2),1,w) is a VOA if v is even and
is an SVOA if v is odd.

The assumption V ~ V always induces a V-isomorphism W =~ W for every irreducible
V-module W.

Lemma 5.1.9. Let W be an irreducible V-module. Then W is isomorphic to W as a
V-module. Furthermore, the operator hgy acts on each irreducible V-module semisimply
with eigenvalues in either Z or % + 7.

Proof: By the following isomorphisms of the space of V-intertwining operators, we

obtain a non-trivial V-intertwining operator J(-, z) of type V. x W — w.

(=)= ()= = ()

Then one can verify that J(1,z) gives a non-trivial V-isomorphism between W and W,
Hence, W and W are isomorphic if W is irreducible. Now assume that W is irreducible.
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Since the operator h( preserves each L(0)-weight subspace of W, there is an eigen vector
0 # w € W such that hgw = aw with a € C. Since h() acts on V semisimply with
integral eigenvalues, it acts on W = V' - w semisimply with eigenvalues in « + Z. Take
the canonical linear isomorphism ¢ : W — W such that Vi (a,2)¢ = ¢Yw(A(h, 2)a, 2).
By a direct calculation, we find that L(0)¢ = ¢(L(0) + 2h) + 27). Since W and W are
isomorphic, they have the same top weight. Hence, 2a + 2v € Z and we reach o € %Z. 1

By the lemma above, W @& W is invariant under V & V in the fusion algebra for V.
So it is natural for us to expect that we can find a V' & V-module structure in W & W.
Let my : W — W be a V-isomorphism. Define V-intertwining operators as follows:

Y%a, 2)w := Yy (a,2)w  foraeV,weW,
YU a, 2)w := Yy (a,2)w  fora € V,io € W.
Then define V-intertwining operators Y'0(-, 2) € (~WW) and Y1(.,z) € (;/) by the

following isomorphisms:

w transpose w A(h,z) VNV transpose VNV
y00(. P 5 y10¢. ~
(VW>9 (-,2) (WV) (WV) G2 el w

A(hy2) " i 11 W
Al (R ) Ty ).
(VW) (’Z)E(VW)

Then introduce a vertex operator Y (-,z) on W& W by Y(-,2) == (YO s Y @Y g
Y- 2).

Theorem 5.1.10. (Theorem 3.13 in [Li0]) Let W be an irreducible V-module. Letw € W
be a vector such that hoyw = aw with o € %Z. Then

(i) If v is even and a € Z, then (W @ W, Y (-, 2)) is an untwisted V & V -module.

(ii) If 7 is even and o € 3 + Z, then (W & W, Y (-, 2)) is a Zy-twisted V & V-module.
(iii) If 7y is odd and o € Z, then (W @ W,Y (-, 2)) is a Zy-graded V & V-module.

(iv) If v is odd and o € L + Z, then (W @ W,Y (-, 2)) is a Zy-twisted V & V-module.
Remark 5.1.11. By the theorem above, we note that in the study of simple current exten-

sions by a simple module, Zs-twisted modules for vertex operator superalgebras naturally

appear.

Lifting of intertwining operators. Let W' i = 1,2,3, be irreducible V-modules
on which A acts with eigenvalues in a; +Z, a; € %Z, respectively. Let ¢ : V — v,

¢i: Wi — Wiand ¢, : Wi — W be canonical linear isomorphisms such that Yi(a,2)po =
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¢oYv(A(h, 2)a, z), Yizi(a, 2)p; = ¢ Ywi(A(h, 2)a, z) and Y (a, 2)¢; = ¢ (A(h, 2)a, 2)
foralla € V. Let m; : Wi — Wi be V-isomorphisms. Note that m; are not determined
uniquely since non-zero scalar multiplications are allowed. We will choose suitable ones
later. Let I°°(-, z) be a non-zero V-intertwining operator of type W' x W? — W?. We
assume that dim (WYV;VQ) = 1. We can get I°(-,2) € (Wl W2) by A(h,z) : (WYV;VQ) S

IP(,2) = I°(-, 2) € (WYVWQ) On the other hand, we obtain

W3 00 transpose WS A(h,z) Wg transpose
5 9., z) Mranspose, Ak _ ) fmanspose,
W W2 W2 i

W3 A(h,z) ML/:?) 7r3_1 W3
— I, 2) € (Wl W2> — (Wl wz) TG E i e

We claim that a linear operator
I(h2) =[P eI e I")(,2): (Wl @ W1> ® (W2 ® W2) — (W3 &) W3)

is a V @ V-intertwining operator if we choose suitable multiples of 7;’s. By considering

the following isomorphisms:

< w3 > transpose ( | > A(2h,2) < V[}3~ > transpose ( ~W3 > ~ ( w? )
5 — =z _— = ~ ,
W12 w2 Wi w2 Wt W1l Ww?2 Wt w?2

we can find the following relation with some A € C.
(¢ o i mut, 2)u? = AE™(—2h, 2)¢sdy w3l (ut, 2) A(—2h, —2)u?

By exchanging 7; by A\~!7; with 73 fixed, we may assume that A = 1. Similarly, since both
I°(ut, 2) and 75 ' @hps IO (A(2h, 2)ul, 2) ¢y ¢y 'my are V-intertwining operators of type
W1 xW? — W3, we may assume that they are equal after a suitable scalar multiplication
on 7. We should note that the V & V-module structures on Wi & Wi do not depend on
the choice of 7;’s. We introduce a parity function e(y,w') € Z, for w! € WU W' by
p(y,w') =1 if v is odd and w! € W' and p(y,w') = 0 for the other cases.

Theorem 5.1.12. Assume that (W1 W2) = CI(-,2). Then the V -intertwining operator
I(-,2) = (I @ I @ I'°© I")(, 2) satisfies the following (generalized) Jacobi identity:

20 (Zl — 22) (Zl — 22> Y (doa, 21) I (w?, 29)w?
20 20

_(_1)6(’7,w1)<“a120—15 (—22 + 21) (22 - Z1> I_(wl, ZQ)Y(qboa, zl)w2 (5‘1‘3)

20 20

o
— (zg + 20) <22 + zo) T(Y (Goa, z0)w', ),

21 21
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where a € V, w* € WU VIN/", i =1,2, and ¢ = e™1 is the root of unity used in the
transpose-operation. Therefore, I(-,z) provides a (V @ f/)—mtertwmmg operator of type
(Wre W) x (W2 e W?2) — (W2 e W3).

Proof: The proof is too long to write so that we give it in Appendix. 1

Remark 5.1.13. We note that if both a; and as are integers and ~ is odd, then the
intertwining operator I(-, z) above is an intertwining operator among untwisted modules
for the SVOA V @ V, whereas if o, is integral and as is half-integral, then I(-,2) is a

Zo-twisted intertwining operator.

5.2 Lattice VOAs as SCE of free bosonic VOAs

5.2.1 Fusion rules for free bosonic VOA

Let b be a finite dimensional linear space with a non-degenerate symmetric bilinear form
(,-). Then we can construct the free bosonic VOA My(1,0) as in Section 2.6.1. It is
shown in Section 2.6.1 that the set of inequivalent irreducible Mj(1,0)-modules is given
by {My(1,a) | o € h}. The fusion algebra for M(1,0) has the following structure:

Mh<]_,06) X Mb(l,ﬁ) = Mh<].,Oé +ﬁ)

Namely, it is isomorphic to the group algebra C[h] associated to the additive group h. We
give a proof of the fusion rule above by using the idea of semisimple primary vectors.

In the following, we identify o € h with o(—1)1 € My(1,0). It is easy to check that
a(—1)1 € My(1,0) is a semisimple primary vector and so we can consider the delta
operator A(a, z) associated to o € h. Consider the M(1,0)-module M(1,3) =

(My(1, 8), Yar, 1,8 (A, 2) -, 2)).
Lemma 5.2.1. As an My(1,0)-module, My(1, )\ is isomorphic to My(1, a + 3).

Proof: Since M;(1,3) is an irreducible My(1,0)-module, so is My(1, 3)). By defi-
nition, we can take a linear isomorphism ¢ : My(1, 3) — My(1, 3)@ such that

YMh(lﬂ)m) (CL, Z)(b = ¢YM1;(1,ﬁ)(A(a> Z)CL, Z)

for any a € V. By a direct computation, we find the following relation:

h(n)é = ¢(h(n) + ono{e, h)).

Therefore, v € My(1,3) is a highest weight vector if and only if ¢v € Mb(l,ﬁ)(a) is
a highest weight vector with highest weight o + 3. Since Mh(l,ﬁ)(o‘) is irreducible,
My(1, 3)@ ~ My(1,~) for some v € b, and hence we have My (1, 3) ~ My(1,a+3).
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Since My(1,0) is a simple current module, we note that all My(1, ), o € b, are also
simple currents because they are realized as deformations of the simple current Mjy(1,0)
by using the Delta operators. By this fact, one can verity the following:

Proposition 5.2.2. We have the fusion rule My(1, ) x My(1, 3) = My(1,a+ 3) for any
o, €b.

Mf] (175)

Proof: Since (MKJ(LO) M;,(l,a)) My (1,0)

= 00,6CY, (1,0)(+, 2) by Lemma 2.4.3, we have

( My(1,7) ) N ( My(1,7)7 )
Mh(LQ) Mb(laﬁ) My (1,0) MU(LO‘) M‘J(laﬁ)(iﬁ) My (1,0)

:( My(1,7v = 8) ) :< My(1,7 — B) )
My(1,0) My(1,0)/ 1) \My(1,0) My(1,0)/ 5 )

~ 5&,7—6CYM3(1,01)(‘, z).
Therefore, we have the desired identity My (1, ) x My(1, 5) = My(1, 0+ 3). 1

5.2.2 Construction of lattice VOAs

Let L be a rational lattice in b such that dimbh = rank(L). Let C[L] = @nerCe™ be the

group algebra associated to the additive group L and set

Vi, = C|L|® M, = @ :

L L] @ Mjy(1,0) ce © Mp(1,0)
a€Ll
Then define
Yo(e®®a,z) e*®@v:=e*® Yo, 1,0 (A, 2)a, 2)v

fore®@a € e @ My(1,0) and e* ® v € V. Then (V7, Yo(, 2)) is an M (1, 0)-module which
is isomorphic to @acr My(1, ). For a € L, we define a linear endomorphism 1, € V7, by

Vo - P Qv =P Qu.

Namely, v, = ad(e®) ®ide(170). Then vy = idy, and a5 = Yayip and so 1) gives rise
to a representation of L on Vy. We introduce a (generalized) vertex operator algebra

structure on V. For 2% = e* ® a and 2% = ¢’ ® b, define

?VL ($a7 Z)ajﬁ = sza-i-ﬂE_(_a? z)Yb(w—aA(ﬁv Z)xaa Z)A(OZ, —Z)@b—ﬂxﬂ
=P R XN E~(—a, 2) Y, (1,0 (A(B, 2)a, 2)Et(—a, 2)(—2)*@b
€ e ® My(1,0){{z}},

where E*(q, z) are defined as in (5.1.1) and (—z)*© = (e™~12)%.
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Remark 5.2.3. We note that the map above is exactly the Mj(1,0)-intertwining operator
of type My (1, o) x My(1,3) — My(1, o+ 3) which we constructed in Proposition [5.2.2.

By a similar computation as in the proof of Theorem 5.1.12, we can show the following
Jacobi identity:

Theorem 5.2.4. ([DLM5, Theorem 8.5]) Let x* € e*® My(1,0), o € L. Then the
following identity holds:

_ _ (a,8)
25 ) <Z ZQ) (Zl Z2) YVL(a:' zl)YVL(a:B 29) 2"

<0
J— _<a7ﬁ> ~ B
_ZO ( 29 + Z1> (Zz - Zl> Yy, (mﬂ’ 20) Yy, (22, 212"
0
_<a77> ~ 5
=4 (ZQ : ZO) <22 : ZO) Yy, (Yo, (2%, z0)2”, 29)27.
1

In particular, (Vi,, Yy, (-, 2)) forms a generalized vertex algebra in the sense of [DL].

Corollary 5.2.5. Assume that L equipped with (-,-) is an integral lattice. Then we have

3 21— 29\ ~ -
25 ) ( L 2) Yy, (2%, 21) Yy, (2P, 25)

20

(=)l 1 <ﬂ> Yo, (27, 20) Y, (2%, 21)

20

21—20\ ~ -~
= 2z, ~1 < ! 0) Yv, (Yy, (2@, 20)T°, 23)

Z2
for z% € e* ® My(1,0), 2° € e’ @ My(1,0).
Assume that L is integral. Set L° := {a € L | (o,a) € 2Z} and L' := L\ L.
Then Vi, = V5o & Vi1 is a Zo-graded algebra by the corollary above. To obtain vertex
superalgebra structure on Vi, we shall need a 2-cocycle on L. Let {a!,... o™k} be

a Z-basis for L. Define € to be the (uniquely determined) {#1}-valued multlphcatlve
function on L x L such that

(—1yleteHatadielal) if s )
e(a’,af) 1= ¢ (—1)leeltetalD/2 i g — )
1 it @<y,
(cf. [FLM] [DL]). Note that e(a, ) = (—1)(®/ /2 and by the bimultiplicability we

have e(a, 3)e(3,a)™! = (—1)@fA+H B8 for o, 3 € L. Then define a vertex operator
map Yy, (-, z) on V, by

Yy, (2%, 2)2” = e(a, B)Yy, (2%, 2)2”
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for z° € e* ® M,(1,0), 2° € e’ ® My(1,0). Then by Corollary 5.2.5 we have:

Theorem 5.2.6. Let L be an integral lattice in b such that C® L ~ . As an L-graded
simple current extension of My(1,0), Vi, = @aecrMy(1, ) equipped with Yy, (-, z) carries a
structure of a vertex superalgebra with the even part Vio and the odd part Vii. Moreover,

if LY is positive definite, then Vi, is a vertex operator superalgebra.

Now consider modules for a lattice VOA V, associated to positive definite even lattice
L. By Theorem 5.2.4 we can introduce an irreducible V;-module structure on V., for
each coset A + L € L°/L, and it is shown in [D1] that every irreducible V-module is
isomorphic to some coset module V.. Here we give another construction of V. As
h C My(1,0) by identification, we can construct a Delta operator A(, z) for each A € L°.

Proposition 5.2.7. ([Li0]) As a Vi,-module, (V, Yy, (A(X, 2) -, 2)) is isomorphic to Vi .

Proof: For simplicity, we denote (Vz, Yy, (A(), 2) -, 2)) by V.. By a direct computa-
tion, we have

Yy, (AN, 2)h, 2) = Yy, (h, 2) + 27\, h)

for h € . Thus Vj, is a completely reducible Mg (1,0)-module and the set of h-weights of
f/L is exactly L + X. Thus VL ~ Vi |

Therefore, all Vz-modules are simple currents. The following is a simple corollary.

Theorem 5.2.8. We have the fusion rule Viyy X Viy, = Vigag, for any A\, p € L°.
Therefore, the fusion algebra for Vi is isomorphic to the group algebra C[L°/L].

5.3 Zo-graded SCE of affine VOAs

In this section we consider an application of Theorem 5.1.8 to the affine VOAs. Here
we consider a relatively simple case, the case of §l2((C); the other cases are similar. Let
g = Ce® Ch @ Cf be the Lie algebra sl (C) with the standard Lie brackets [h, e] = 2e,
[h, f] = —2f and e, f] = h. We normalize the invariant bilinear form on g such that
(h,h) = 2. Let g be the corresponding affine Lie algebra of type Agl). For any non-
negative integer ¢, we have an affine VOA L4(¢,0) as in Section 2.6.3. It is shown in [FZ]
that Lg(¢,0) is rational and irreducible Lg4(¢,0)-modules are {Lq4(¢,5) | j = 0,1,...,¢}.
The fusion algebra for L4(¢,0) has the following structure:
min{i,j}
Lo(f,i) x Ly(C,j) = > Lg(ti+j — 2k). (5.3.1)

k=max{0,i+j—¢}

We note that Ly(¢,0) and Lg(¢, ¢) are all the simple current Ly(¢,0)-modules.
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Remark 5.3.1. For 0 < j < £, set x;(7,2) = trp e " ~1zhio) gL O=¢/20  Phen the
following character formula is well-known (cf. [Wak|, for example):

]+1 £+2( 72) - ‘9—3'—1,“2(77 Z)
012(7,2) — 0-12(7,2)

Xj(7—7 Z) -

where 6,, ,,, (T, 2) Z ezwﬁm” mj . Using the formula above, the following modular
j€Z+ n
transformation is obtained:

¢
—1 1 2 1 22 (1) (k+1) (1) (k+1)
) =my/—10% { wy/—1 —my/—1 }
5 )= ——— —e2 T e 0+2 —e 42
il 7 ) 2v/—1V £ +2 Zk:(]

X&(T, 2).

Since Ch is the Cartan subalgebra of g, k() acts on Lg(¢,0) semisimply with eigenval-
ues in 2Z. Therefore, the set of integral semisimple primary vectors in Ch is %Zh.

Proposition 5.3.2. We have isomorphisms (Lg((, §),Y (A(3h, 2) -, 2)) =~ Lg(€, 0 — j) as
Ly(¢,0)-modules.

Proof: For simplicity, let us denote (Lg(¢, 7), Y (A(3h, 2) -, 2)) by Ly(¢, 7). Then we
can take a canonical linear isomorphism 1 : Ly(¢,0) — Lg4(¢,0) such that Y (a,z) =
VY (A(3h, 2)a, z) for any a € Ly(¢,0). Then by definition we have

Ry = P(hy + 0nol), eV =veminy,  fuy¥ =¥ fm-1).

Thus 91 is a highest weight vector with highest weight ¢ and ig(é, 0) >~ Ly(¢, ). Now by
the fusion rules (5.3.1) we have Ly(¢, j) ~ Lg(¢, ¢ — 7). 1

Remark 5.3.3. By Z:}g(é, 0) >~ Ly(¢,0), we note that (Lg(¢,7), Y (A(h, 2) -, 2)) =~ Lg(, j).

Now by Theorem [5.1.8, we can construct a Zs-graded extension Lg(¢,0) @ Lg(¢, ¢) if
(3h,3h) = 0 is an integer.

Theorem 5.3.4. ([Li5]) Let ¢ be an even integer.

(1) If £/2 is even, then the simple current extension Lg(€,0) @ Lg(€,€) is a simple Zs-
graded vertex operator algebra.

(2) If £/2 is odd, then the simple current extension Lg(¢,0) @ Lg(¢, 1) is a simple vertex
operator superalgebra.

Remark 5.3.5. If £ is odd, then Lg4(¢,0) @ Ly(¢, ¢) does not form a vertex operator algebra
nor superalgebra. This is due to the failure of the locality. However, it is shown in [Li8]

that by adding some bosonic fields we can define a Zsy-graded simple current extension of

Lg(2,0) even if £ is odd.
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Lattice construction of affine VOAs. Before we end this section, we give an explicit
construction of some affine VOAs. Let L be a root lattice of type A, D or E. Then we
can construct the lattice VOA V7, as a simple current extension of the free bosonic VOA
Mcr(1,0). The weight one subspace of V, is

(Vi1 ~CLa € Ce

a€l
(a,y=2

and forms a Lie algebra under the 0-th product in V. Since L(1)(V7); = 0, VI, possesses
unique invariant bilinear form up to normalization and so the Lie algebra (V7); has a

non-degenerate symmetric invariant bilinear form.

Theorem 5.3.6. ([FLM]) The Lie algebra (V1); is a simple Lie algebra with a non-
degenerate invariant bilinear form. It’s Cartan subalgebra is CL. Therefore, if L is a root
lattice of type A,, D, or E,, then (V)1 is a simple Lie algebra of type A,, D, or E,,

respectively.

Denote the simple Lie algebra (V7); by gr. The vertex operators of elements of g,
provide a level 1 representation of the affine Lie algebra g7 on V. Therefore, g; generates
a level 1 affine VOA Ly, (1,0) inside V7. Since V7, is generated by its weight one subspace,
we have Vj, ~ Lg, (1,0). Now consider a tensor product algebra V;** ~ Vye: of £ copies
of V1. For x € gy, define its diagonal component in VL‘N by

P=101® - @l+1lzre--@l+ - +11e @z € (V2.

Then g; := {# € (V2% | 2 € g1} forms a simple Lie algebra isomorphic to gy, and their
vertex operators define a level ¢ representation of the affine Lie algebra g, on VLW . Hence,
g1 generates a level ¢ affine VOA Ly, (¢,0) in V2*.

Theorem 5.3.7. ([DI)]) The sub VOA of V2 generated by the diagonal components %,
x € gy, is isomorphic to Ly, (¢,0). Therefore, we can realize the affine VOA Ly, (¢,0) as
a subalgebra of the lattice VOA V.

Remark 5.3.8. By the theorem above, we can also construct the Z,-graded extensions of
the affine VOA associated to sl(C) by using the lattice A (cf. [LLY]).

5.4 Zo-graded SCE of the unitary Virasoro VOAs

Recall from Section 2.6.4 the unitary series of the Virasoro VOAs Ly (¢, 0) with ¢, =
1—6/(m+2)(m+3), m € N. It is shown in [DMZ] [Wan] that Lv;: (¢, 0) is rational and
all the irreducible Ly, (¢, 0)-modules are provided by Lvi (¢, h%)) with

{r(m+3)—s(m+2)}*—1

him) —
e 4(m + 2)(m + 3) 7

1<r<m+1, 1<s<m+2. (5.4.1)
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Note that his) = h{")s o .

Remark 5.4.1. The ¢-character of LVir(cm,hfnﬁ)) is well-known (cf. [KR]) and given as
follows:

ChLVir(cmyhsﬂ?,”;))(T) = Z(qb(k) _ qa(k))/ H(l o qi)7
=1

kez
where alk) = {2m+2)(m +3)k + (m+3)r + (m +2)s}> -1
- 4(m + 2)(m + 3) )
b(k) := {2(m+2)(m +3)k + (m + 3)r — (m + 2)s}? — 1.

4(m + 2)(m + 3)

Set XSE)(T) — q_CM/MChLV- . h(m))(r) for 1 < s <r <m+ 1. Then following modular

transformation law holds:

(m) _ 8 (r+3)i49) gy T i 5T (m)
Xrs (—1/7) = \/ (—1) sin sin X (7).
(m+2)(m+ 3) ISjSiZSm—H m+2  m+3""

The fusion rules are computed in [Wan| and given as follows:

Lvie(em, hil,il) X Lyir(Cm, h£2,§2) = Z LVir(Cm7h‘rl,r2|+21717|81782‘+2j71), (5.4.2)

i€l jet
where
I={1,2,...,min{ry,ro,m+2—r;,m+2 —rq}},
J={1,2,...,min{sy,s9,m+3 —s;,m+3—s3}}.

By the formula above, we find that only LVir(cm,th})) and Ly (¢, hf,T sz) are simple
currents. We also note that h§"{’ = 0 is the minimal value and h;:zzl,l =m(m+1)/4 is the
maximal value among h&f’;), 1 < s <r<m+1. The fusion rules between Lv;, (¢, 0) and
Lvic(Cm, hfﬁl’l) have a Zy-symmetry, so we can expect that Ly (¢, 0) @ Ly (¢, hfﬁgl’l)
forms a Zo-graded simple current extension. We prove that this is true by using Theorem
0.3.4.

Let g and Ly(¢, j), 0 < j </, be as in the previous section. The weight one subspace
Lg(€,0)1 of Lg(¢,0) is Ce(—1y1 @ Ch(_1)1 @ Cf_1)1 and forms a simple Lie algebra iso-
morphic to g under the 0-th product in Ly(¢,0). In the following, we identify L4(¢,0);
with g. Let m be a positive integer. Let h',e!, f! be the generators of g in Ly(1,0)
and let h™,e™, f™ be the generators of g in Ly(m,0). Then h™*! := Al @1+ 1 h™,
el i=el@l+1®e™ and = fl@ 1+ 1® f™ generate a sub VOA isomorphic to
Ly(m + 1,0) in the tensor product Ly(1,0) ® Lg(m,0). Denote by O Q™ and Q™! the
corresponding Virasoro vector of Lg(1,0), Lg(m,0) and Lg(m + 1,0). Then it is shown
in [GKO] [DL] and [KR] that w™ := Q'@ 1+ 10 Q™ — Q™! is also a Virasoro vector
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with central charge ¢,, = 1 —6/(m + 2)(m + 3) and the subalgebra generated by w™
is a simple Virasoro VOA Ly, (¢, 0). Since a decomposition w™ + Q™*! is orthogonal,
Lyg(1,0) ® Lg(m,0) contains a sub VOA Lyi (¢, 0) ® Lg(m + 1,0). This is the famous
GKO-construction of the unitary Virasoro VOAs [GKO]. In |[GKO], the following decom-
position law is also established:

LQ(LE)@Lg(mhj) = @ LVir(Cm7h§'Ti7s+1) ®Lg<m + 178)7 (543)

0<s<m+1
s=j+emod 2

where € = 0,1 and 0 < j < m. We note that all Ly, (¢, hg?)), 1 <s<r<m+1, appear
in the above decompositions.

Remark 5.4.2. We note that Comz,_1,0)g Ly(m,0)(Lg(1m,0)) = Lyic(cm, 0).

Now set
Ly(1,0) ® Lg(m,0) @ Lg(1,0) ® Lg(m,m) if m is even,
Ly(1,0) ® Lg(m,0) @ Lg(1,1) ® Lg(m,m) if m is odd.

U(m) :=

Then U(m) is a Zs-graded simple current extension of L4(1,0) ® Lg(m,0) and it is a
simple VOA if m = 0,3 mod 4 and is a simple SVOA if m = 1,2 mod 4 by Theorem
5.1.8. The commutant subalgebra of Ly(m + 1,0) is

Comp () (Lg(m +1,0)) = Lyiy(cm, 0) & Lyic(cm, hiy )
and hence we obtain the desired simple current extension.

Theorem 5.4.3. ([LLY]) The simple current extension Lyi(¢pm,0) @ Lyic(Cm, hgﬁljl) is
a simple Zo-graded vertex operator algebra if m = 0 or 3 mod 4 and is a simple vertex
operator superalgebra if m =1 or 2 mod 4.

In [LLY], all irreducible Lyi(¢m,0) & Lyic(Cm, hf;” jljl)—modules are classified and all
the fusion rules for the extensions are also computed in the case where the extensions

are again vertex operator algebras. Here we give some of their results. Below we denote
Lvi(c,h) by L(c, h) for simplicity.

* The case m =3 : L(4/5,0) ® L(4/5,3).
Theorem 5.4.4. ([KMY] [LLY]) A VOA L(%,0)®L(%,3) is rational and every irreducible
module is isomorphic to one of the following:
W(0) := L(5,0) © L(5,3), W( 5
W) =L(5 3@ LG5, Wig)*: L(?%)i>
where W(h)~ is the o- con]ugate module of W(h)T. The dual modules are as follows:
(W(h)=)* ~W(R)T if h=2 or & and W (h)* ~ W (h) for the others.
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Remark 5.4.5. We may exchange the sign + since there is no canonical way to determine
the type + and — for the modules W (h)* and W (h)~. However, if we determine a sign
of one module, then the following fusion rules automatically determine all the signs.

The fusion algebra for W (0) has a natural Zs-symmetry. For convenience, we use the

following Zs-graded names.
AV :=W(0), Al=W(E)", A2 =W(),
B :=W(%), B':=W(3x)t, B*:=W(&)".

(S]]

Theorem 5.4.6. ([M2] [LLY]) The fusion rules for irreducible W (0)-modules are given
as
Al x Al = A" Al x Bi = Bt Bix Bi = At 4 Biti,

where i,j € Zs. Therefore, the fusion algebra for W(0) has a natural Zs-symmetry.
*x The case m =4 : L(6/7,0) ® L(6/7,5).

Theorem 5.4.7. ([LY] [LLY]) A VOA L(£,0) & L(£,5) is rational and all its irreducible

modules are the following:

N(O) = L0 & L(E,5), N} = L&D LEZ), NG = L&D oL B)
NOE= LGOS NEES LR NG = LGS

Also, the dual modules are as follows:
N(h) for the others.

where N(h)~ is the o-conjugate module of N(h
(N(R)*)* ~ N(h)F ifh=1%, & or 22 and N(h

37 21 21

)"
)" =

The fusion algebra for N(0) is also determined in [LY] and [LLY]. To state the fusion
rules, we assign Zs-graded names to irreducible modules (cf. [LY]). Define

C°:= N(0), C':=N(%)", N(3),
Do N, D Ny 57 N
E°:=N(2), E':=N(3)", E?:=N(5)".

Theorem 5.4.8. ([LY] [LLY]) The fusion rules for irreducible N(0)-modules are given

as
CixCi = O™, DixDi = (4 [+,

C'x DI = D, Dix B} = D4 Eiti
C'x B = Ei-i—j’ Eix B/ = QL Diti _i_Ei-i-j’

where i,j € Zs. Therefore, the fusion algebra for N(0) has a natural Zs-symmetry.



Chapter 6

The Moonshine VOA 1I:
Frenkel-Lepowsky-Muerman
Construction

In this section we consider the famous moonshine vertex operator algebra V¥ constructed
by Frenkel-Lepowsky-Muerman [FLM]|. The moonshine VOA is constructed as a so-called
Zo-orbifold construction from the lattice VOA V) associated to the Leech lattice A. The
original proof of the existence of a structure of a vertex operator algebra on V% in [FLM]
uses many group theoretic results and so seems to be very complicated. After [FLM],
Huang suggested a simple proof of the existence of vertex operator algebra structure on
V¥ by using a theory of fusion products in [H3]. In each case, V% is constructed as a

Zo-graded simple current extension of a Zs-orbifold subalgebra of Vj.

6.1 Z,-orbifold theory of lattice VOAs

Let (L, (-,-)) be a positive definite even lattice.

6.1.1 Central extension

Let us review the central extension of L for a while. Let Zy = (k | k* = 1) be a group of

order 2 and consider the following central extension:
1—Zy—L5L—1. (6.1.1)

Let e: L 3 o e* € L be a section, that is, a map such that m(e*) = a. We may choose
e to satisfy e’ = 1;. Then L= {kfe* | « € L, s = 0,1} and we can find a 2-cocycle
e : L x L — Zy such that e* - e’ = g(a, 3)e**?. The cocycle € depends on the choice
of the section e, but it is known that it is unique up to 2-coboundary. More precisely, it

83
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is known that the set of equivalence classes of central extensions (6.1.1) is in one-to-one
correspondence with the second cohomology group H?(L,Z,) (cf. [FLM]).

One can verify that the commutator map c(a, 8) := e(a, 8)e(3, a) ™t € Zs is symmetric
bimultiplicative map. It is shown in [FLM] that the central extension (6.1.1) is uniquely
determined by the commutator map c(-,-) up to equivalence. In the construction of the
lattice VOA Vi, we need the twisted relation e - e® = x{@fef . e for all a, 3 € L, or
equivalently a central extension (6.1.1) determined by the commutator map c(«, 3) =
k(@8 We can give such a central extension explicitly. Let A = {a',..., a5} be a
Z-basis of L. Then define the bimultiplicative map € : L x L — Zs by

e(ai,aj):n<"‘i’aj> if ¢>j and 1 otherwise.

Then ¢ defines a 2-cocycle in Z2(L, Z;) and satisfies the relation €(a, 3)e(3, a) ™t = (@0
for all o, 3 € L. Hence, we obtain a central extension of type (6.1.1) with the desired
commutator relation. In the following we fix the such above central extension L. Let
X : (k) — C* be the faithful character defined by x(x) = —1. Denote by C, the one-
dimensional space C viewed as a (k)-module on which (k) acts according to x and denote
by C{L} the induced L-module C[L] ®cyry) Cy. Then C{L} = Spanc{e* | « € L} and
linearly isomorphic to C[L]. Since (k) is a central subgroup, C{L} is an L-bimodule and
hence becomes a twisted group algebra.

Let § : L > o — —a € L be the (—1)-isometry. Then # naturally acts on L by
0:e” — e and k — & by our construction of L. Let K = {x{®®/2(¢®)? | ¢ € L}. Then
7K =2L and §(e®) - (e7*) € K for all « € L. Also set R ={a € L | (o, Ly C 2Z}. Then
2L C R and the pull-back R of Rin L is the center of L and K is a subgroup of R. In

particular, K is a normal subgroup of L.

Proposition 6.1.1. ([FLM, Proposition 7.4.8]) There are exactly |R/2L| central charac-
ter x : R/K — C* ofI:/K such that x(kK) = —1. For each such x, there is a unique (up
to equivalence) irreducible ﬁ/K-module T, with central character x, and every irreducible
ﬁ/K—module on which kK acts as —1 s equivalent to one of these. In particular, viewing

T, as an L-module, 8e® on T, =e* onT) forac L.

6.1.2 Zs-orbifold of lattice VOAs

Let Vi, be the lattice VOA associated to L. As a linear space, V} is isomorphic to
Mcp(1,0) @ C{L}, where C{L} described in the previous subsection. Take a Z-basis
A={a',... a*D) of [, Then V; has a linear basis

{61(_77/1)"'67“(_”7")67|6z’€A7 ’YEL, ng = 2n, > 17 TZO}
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Let 0 : L > a— —a € L be the (—1)-isometry on L. Let 6 act on V7, as follows:

0 : 51(—7”41) e 'ﬁr(_nr)e’y = (—1>T : 51( ) ﬁr( r)

Then 6 above is not only a linear automorphism on Vj but also preserves the VOA
structure of V7, namely, § € Aut(Vy). Clearly 62 =1 on V. Thus V, = V;" &V, where
V= are the eigenspace of § with eigenvalue +1. The subalgebra V" is often called the
Zsy-orbifold or charge conjugate orbifold of V. By the quantum Galois theory, V;' is a
simple VOA and V; is an irreducible V;'-module. In the study of V;" we naturally meet

the O-twisted representations of V.

6.1.3 Zs-twisted representations

Set h = C®y L. Consider the twisted affine Lie algebra by = CtY/2[t,t!| @ h & Cc with

commutator relations
[t @h,t" @ k] = dpminomlh, k), [br,c] =0.

We often denote " @ h by h(n). As in the untwisted case, we have a triangular decompo-
sition by = b} @ h% & by with b = B,20t="2) @ b and h° = Cc, and so we can define a
highest weight hr-module Mj(1). Let C a one-dimensional h9-module such that ¢1 = 1.
Viewing C as a trivial GJT“—module we have the induced module

M,,T(1)—1nd“§> C=ubr) ®@ 1.
’ UGG+7) UH+55)

Let T\ be an irreducible i/ K-module as in Proposition [6.1.1. Define a twisted space

Vgx = Mh,T(]-) %TX

Define the operator Zy(e*, z), a € L, of End(VLTX)[[z%7 z—%]] as

Zg(e®, z) =27 exp Z

nei+N nes+N

For v = ay(—ny) - - - a.(—n,)e’® € Vi, we define
Wolo,2) = (o)) - (g dhenlc) ) Zale”,2)°
0(v,2) = (= D) Loy (z = 1) 2an(2) | Zo(€”, 2)

where «;(z) = Zne% +70;(n)z7""! and the normal ordering °A° is inductively defined by
following rule:

a(m)-°X° ifm<0,
cXe-a(m) ifm>0
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for « € h and X € End(VLT X). Let ¢, be the complex numbers determined by the

1 1/2 1 1/2
—log(( il Gt ) )z D ™y,

2
m,n>0

formula

and then set

rank(L)
z z —m—n
= > D> cuaB(m)Bi(n)z
m,neN i=1

where {3',..., k()] is an orthonormal basis of h. Finally we define the f-twisted
vertex operator associated to a € Vi, to be

YVLTX (a,2) == Wy(e®a, 2).
Then we have the 6-twisted representation of V7.
Theorem 6.1.2. (JFLM]) The pair (V,*, YVLTX (+,2)) is an irreducible 0-twisted Vi,-module.
And the following theorem is established in [D2].

Theorem 6.1.3. (/D2]) The set of inequivalent irreducible 0-twisted Vi,-modules is given

by {(V,X, Y, (-, 2)} where T, runs over the irreducible L/K -modules described in Propo-
L

sition 0.1.1.

6.2 Leech lattice VOA

In this section we construct the Leech lattice VOA V, and its unique irreducible #-twisted
module V{ explicitly.

Let Q ={1,2,...,24} be a set of 24 elements and C C P(2) (the power set of ) be
the binary Golay code. Then C is a vector space over Iy of dimension 12 under symmetric
difference. We shall fix the following basis for C:

Ci={i,1+4,244,3+4,44+,7+0,10+¢,12+4}, i =1,...,11, C;p=Q.

Let b be a C-vector space with a basis {«; | ¢ = 1,...,24}, and consider the symmetric
bilinear form (:,-) on b such that (s, a;) = 26;;. For C C Q set a¢ := >, - a;. Then
Leech lattice A can be realized as follows:

A—ZZ ac—{—ZZ ag — ;).

ceC 1€Q)

Theorem 6.2.1. The Leech lattice A is a positive definite even unimodular lattice with

no element of norm 2. It is unique up to isometry.
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By Dong [D1], every irreducible Vi-module is isomorphic to V} itself. Thus we have:
Corollary 6.2.2. The lattice VOA V} is a holomorphic VOA.

Now consider #-twisted representation of Vj. In the construction of Vj, we have to
define a 2-cocycle. We define it as follows. The lattice A has a basis {, ..., (24} where
B = tag —au, B = aio1 —a; for i = 2,...,12 and Biay; = tag, for j = 1,...,12.
Define a bimultiplicative form € on A by €(8;,3;) = (=1)%5) if i > j 1 otherwise.
Then e(a, B)e(B,a) = (1) and €(a, o) = (=1){* =1 for a, 3 € A. Let @Q be the
sublattice of A generated by {71, ...,724} where v1 = 2aq, 7, = a1 — «; for 2 < ¢ < 23
and 724 = 3aq. Then one can check that €(y;,7;) = 1 for 1 < 4,5 < 24. Namely, the
2-cocycle vanishes on Q).

Let A be the central extension of A by the cyclic group (£1): 1 — (£1) = A — A — 1
which is determined by the 2-cocycle €. Then the pull-back Q of Q in A is isomorphic to
a direct product (£) x @ and is a maximal abelian subgroup of A Lete: A — Abea
section determined by €. Then e - e = ¢ for a, 3 € Q. The (—1)-isometry 6 on A
acts on A by e® — e and —1 — —1. We have #(e®) - (e%)! = (=1){@*/2(¢2)? and so
if we set K = {(z)-27' | 2 € A} then K N (+1) =1 and K C Q. Define a character
¥ :Q — (£1) by ¥(Q) = 1 and 1)(—1) = —1. Let C; be the one-dimensional module for
Q defined by the character 1. Then define the induced A-module T' = C[A] ®cig Co-

~

Theorem 6.2.3. ([FLM]) The C[A]-module T is the unique irreducible module for the
quotient group A/K on which —K acts as a scalar —1. In particular, the associated

O-twisted Vy-module VI is the unique irreducible 0-twisted representation of Vy.

Remark 6.2.4. Tt is not difficult to show that dim T = 2'2.

The twisted space V{ is linearly isomorphic to Mca (1) ®cT by definition. Now
define the action of # on T" as —1. Since € naturally acts on My (1), by letting 6 act
on Mcear(1)®@T as §®60 we have an involutive action of § on VAT. Then we have a
decomposition V{ = (VI)T @& (VI)~ where (V{)* are eigenspace for 6 with eigenvalue
+1. By the definition of the twisted vertex operator map on V', we can show that L(0)
acts on T as a scalar 3/2. So we have N-graded decompositions (V)" = @,52(V))I and
(Vi)™ = @n>0(VY ), /- In particular, both (Vi)™ are irreducible V;"-modules.

At now, we have constructed four inequivalent irreducible V,"-modules, namely, VAjE
and (V,I)*. It is shown in [AD] that they are all the irreducible V,'-modules:

Theorem 6.2.5. (|[D3] [AD]) An irreducible V" -module is isomorphic to one and only
one of Vi, Vi, (V)T and (Vy)~.
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6.3 Moonshine module

The moonshine module is defined to be V* := VI @ (V{)*. The moonshine module is
a Z-graded space and it is known that its g-character is the SLy(Z)-invariant j-function
q“**chyo (1) = J(q) = j(q) — 744. The following result is established in [FLM]:

Theorem 6.3.1. ([FLM]) The Z-graded space V* has a natural vertex operator algebra
structure with central charge 24 and its automorphism group is the Monster finite simple
sporadic group M.

The original proof in [FLM] uses many results from the finite group theory, especially
Griess’ result in [G] and Conway’s result [C]. Let us explain their ideas briefly. There
is a sub VOA U of V,F and its inequivalent irreducible modules UV, /(1% and U(V
that such that V" = U @ UOY and (V{)* = U1 @ UAD. Then they construct an
automorphism o € Aut(U(), called triality, such that o permutes UV, U1 and 0D,
Using o, we can mix the untwisted space V" and the twisted space (VI)* and hence
we can introduce an algebraic operation on (V{)* by which we define a vertex operator
algebra structure on V" & (V{)*.

On the other hand, Huang suggested another proof of the theorem above by using a
theory of fusion products which he and Lepowsky devised. Here we present Huang’s proof
of the existence of a vertex operator algebra structure on V2. First, we prepare some facts
about V.

Theorem 6.3.2. ([Ab] [ABD] [M10] |[Yams]) The Zy-orbifold V;" is rational Cy-cofinite
VOA of CFT-type for any positive definite even lattice L.

Theorem 6.3.3. (/D3] [ADL]) The fusion algebra for V,t is isomorphic to Zy & Zs by

the following association:
VA+ A (070)7 VAi « (17())7 (VAT)Jr A <O7 1)7 (VAT)i A (17 1)'

Remark 6.3.4. 1t is shown in [ADL] that Theorem 6.3.3!is still true if we replace A by any

positive definite even unimodular lattice.
Now we prove
Theorem 6.3.5. (JH3]) The extension V& = V& @ (VI)* has a structure of a simple

vertex operator algebra with central charge 24 as a Zs-graded simple current extension of
Vi

Proof: We need to define a vertex operator map on V% Since all irreducible V-
modules are self-dual, we can use a method in [FHL]. For a,b € V" and u,v € (V{)™T,
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we define Y#(a, 2)b := Yy, (a, 2)b, Y¥(a, 2)u := Yyr(a, 2)u, Yi(u, z)a := e VY (a, —2)u,
and Y¥(u, 2)v € V7((2)) is defined by

(@, Y*(u, 2)0)ys = (Vyp(a, ==~ )e MO (=200, e H0) o

for all @ € V. Then it is shown in Theorem 5.6.2 of [FHL] that Y*(-, z) on (VI )* @(VI)*
is a V -intertwining operator of type (V{)™ x (V{)T — Vi and the Jacobi identity for
Y¥(-, 2) is satisfied except the case for three module elements in (V;I')*. Therefore, by the

theory of local systems, we only need to show the mutually commutativity
(21 — 22) VY, 20) Y0, 2)w = (21 — 22) VY (0, 20) Y (u, 21 )w

for u,v,w € (VI)* and N > 0. By Theorem 3.7.5 (cf. [H1] [H4]) there is a non-zero
scalar A such that

(21 — 22)NYH(U> Zl)Yh(Uv Zo)w = )‘(Zl - ZQ)NYH(% ZQ)Yh(ua 21)w

holds for any three elements u,v,w € (V{)™ and suitable N > 0 since all irreducible
Vi F-modules are simple currents. So we should prove that A = 1. Tt is shown in [FLM]
that for a suitable element x € (V)3 we have (z, )+ = 1. Thus by Theorem 3.4.6 the
V" -invariant bilinear form on (V{)* is symmetric. Then it is shown in Proposition 5.6.1
of [FHL] that Y¥(-, z) satisfies the skew-symmetry. Then the skew-symmetry together
with associativity for Y#(-, z) provides the commutativity for Y¥(-, z). This completes the
proof. 1

We call the structure (V¥ Y¥(,2)) the moonshine vertex operator algebra.

Corollary 6.3.6. (cf. [H3]) Let T be an involution on V* such that T = 1 on V' and
r=—1o0on (V). Then Vi @ (VI)~ is a unique irreducible T-twisted V*-module.

Proof: By the fusion rules for V" and Theorem 4.5.3, an irreducible V,"-module V~
is uniquely lifted to be a T-twisted V-module. 1

Remark 6.3.7. It is known that the involution 7 in the theorem above belongs to the

2B-conjugacy class of the Monster.

Remark 6.3.8. In [H3], Huang proved a stronger theorem which includes both Theorem
6.3.5 and Corollary 16.3.6. He proved that the Z, @ Z,-graded space W := VieVy e
(VT @ (V)™ has a structure of an abelian intertwining operator algebra with central
charge 24.

Remark 6.3.9. As Huang said in [H3|, his approach to prove the vertex operator algebra
structure is independent of the triality and the finite group theory. This independence
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allows us to obtain another proof of the theorem saying that the Monster is the full
automorphism group of the moonshine vertex operator algebra based on the theorem
saying that the Monster is the full automorphism group of the Griess algebra proved by
Griess [G] and Tits [Ti], simplified by Conway [C].

6.4 2A-frame

Let Z~ be a lattice of type v/2A;, that is, (v, 7v) =4, and consider a lattice VOA V.. In
Vi, we can find a pair of mutually orthogonal conformal vectors with central charge 1/2

as follows:

w’ = 1—167(21)]1 + i(e7 +e ), w'= 1—167(21)]1 — %(e’y + e 7).
We also note that w = w® +w! is an orthogonal decomposition of the Virasoro vector w of
Vz~ and both w” and w' are contained in the Zy-orbifold VZj;. Since the invariant bilinear
form on VZJ; is positive definite, the subalgebras generated by w?, i = 0, 1, are isomorphic
to the simple unitary Virasoro VOA Lyi(1/2,0). Therefore, V; contains a subalgebra
isomorphic to Lyi(1/2,0) ® Lyi;(1/2,0).

Recall the Leech lattice A constructed in Section 6.2. One can easily verify that the
sublattice generated by {awg;—1 £ag; | 1 < i < 12} is a direct sum of 24 copies of Z~y above,
or equivalently is isomorphic to a lattice of type v/2AP?*. Therefore, the Z,-orbifold Vi
contains a tensor product (VZJ;)®24 of 24 copies of VZTY and hence we obtain an embedding
of Lyir(1/2,0)%* into the moonshine VOA V* = V- @ (VI)*.

Theorem 6.4.1. ([DMZ]) There is an orthogonal decomposition w* = el +- - -+e* where
w* is the Virasoro vector of V%, such that each of €', 1 < i < 48, generates Ly (1/2,0)
inside V.

Remark 6.4.2. This fact has been generalized in [DLMN].
Since [DMZ] the study of V* as a module for the unitary Virasoro VOA Ly, (1/2,0) was

started by many mathematicians. In particular, Miyamoto succeeded to reconstruct the
moonshine VOA V# from the representation theory of Lyi(1/2,0) in [M5]. Miyamoto’s
theory contains many important results on the moonshine VOA and also on the Monster

simple group. In the next section, we review Miyamoto’s reconstruction of the moonshine
VOA.



Chapter 7

The Moonshine VOA 1I:
Miyamoto Construction

In this section we review Miyamoto’s reconstruction of the moonshine vertex operator
algebra which uses representations of the unitary Virasoro VOA Ly;,(1/2,0). Throughout
this section, we denote Ly (¢, h) simply by L(c, h).

7.1 The Ising model SVOA

In this section we will give an explicit construction of the Ising model SVOA L(1/2,0) @
L(1/2,1/2) and its Zo-twisted modules L(1/2,1/16)*. This construction is well-known
and the most of contents in this section can be found in [KR], [FFR] and [FRW]J.

7.1.1 Realization of Ising models

Let Ay be the algebra generated by {¢y | k € Z + %} subject to the defining relations

[wﬁhwn]ﬁ- = Y n + Yo¥m = 5m+n707 m,n € Z + %,

and denote a subalgebra of A, generated by {¢y, | k € Z + %, k> 0} by A:g. Let C1 be a
trivial A:Z-module. Define a canonical induced 4,-module M by

M = Indjﬁ@]l =A, ® Cl.
¥ AT

We can define a unique symmetric contravariant Hermitian form (-|-) on M such that
(1]11) = 1 and (,alb) = (aly_,b) for all n € Z.
We can find a representation of the Virasoro algebra on M. Following [KR], set

LM (n) = % S (04 2 sy MEZ (7.1.1)

k>-n/2

91



92 CHAPTER 7. THE MOONSHINE VOA II:  MIYAMOTO CONSTRUCTION

Then {LM(n) | n € Z} gives a representation of the Virasoro algebra with central charge
1/2 on M. Since the invariant Hermitian bilinear form on M is clearly Vir-invariant, M
is a completely reducible Vir-module. The unitary highest weight representations for the
Virasoro algebra with central charge is only L(1/2,0), L(1/2,1/2) and L(1/2,1/16) (cf.
[KR]), we have the the following decomposition

M = L(1/2,0) ® L(1/2,1/2)

as a Vir-module. The highest weight vectors of L(1/2,0) and L(1/2,1/2) are 1 and
W_ 1 1, respectively. It is clear that the decomposition above coincides with the standard

Zo-graded decomposition
L(1/2,6/2) = Spang {¢—p, -+ ¥p, A |y > >np >0, ny+ - +n €Z+6/2 }

for 0 =0, 1, and we also note that the basis above is an orthonormal basis for (M, (-|-)).
Another unitary Vir-module L(1/2,1/16) is realized as follows. Let A, be the other
algebra generated by {¢, | n € Z} with defining relation

[¢ma ¢n]+ = 5m+n,(), m,n € 7.

Let .A;f be a subalgebra of A, generated by {¢,|n > 0} and let Cuvy be a trivial one-
dimensional A;f—module. Then set N = Indj% Cuvg as we did previously. We can introduce
a symmetric contravariant Hermitian bilinear form (:|-) on N such that (vglvg) = 1,
{vol@ovo) = (Povo|ve) = 0 and (pnalb) = (ald_nb).

We can find an action of the Virasoro algebra on N. Set

LN(TL) = idn,o + 1 Z (n + 2k>¢fk¢n+ka n € 7. (712)

16 2 N
Then {LY(n) | n € Z} defines an action of the Virasoro algebra with central charge 1/2
on N. The invariant Hermitian bilinear form on N is clearly Vir-invariant, so N is a
direct sum of irreducible unitary highest weight modules for the Virasoro algebra. In N
we can find two distinct highest weight vectors vy and ¢ovy with highest weight 1/16 and

so N decomposes as follows (cf. [KR]):
N = L(1/2,1/16) & L(1/2,1/16).

Remark 7.1.1. The irreducible Vir-modules L(1/2,0), L(1/2,1/2) and L(1/2,1/16) are

called Ising model.
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7.1.2 SVOA structure on Ising models

We keep the same notation as previous. By its construction, M is generated by 1 over

Ay. Define the generating series

D= Yy

nez

Since [(2),¥(w)]y = 27'8(%), ¥(z) is local with itself and it follows from the defining
relations of A, that v(z) satisfies L™ (—1)-derivation property: [LM(—1),9(2)] = 0.4(=).
Therefore we can consider a subalgebra of a local system on M generated by v(z) and

I(z) = idys. By a direct calculation, one sees that

1 M —n 2
§¢ (2) o2 9(2 E L
ne”Z
where o,, denotes the n-th normal ordered product defined in Section 3.2. Since we have

a basis
¢_nl+%¢_n2+%---¢_nk+%]l, ng>mng>--->n >0 k>0

of M, we can define a vertex operator superalgebra structure on M by defining a vertex
operator of each base element above. For k = 0 we set Y (1, z) := idy, and inductively we
define YM(zD_nJr%a, z) :=1(2) 0, Y (a,z). Then by the theory of the local system, we have

the following well-known statement.

Theorem 7.1.2. By the above definition, (L(1/2,0)&L(1/2,1/2), Ya (-, 2), 1, %@/J_%@D_%]l)
has a unique simple SVOA structure with even part L(1/2,0) and odd part L(1/2,1/2).

Note that the invariant bilinear form on M coincides with the contravariant bilinear
form on M since ¢, = ¢, for all n € Z + 1.

Next, we consider L(1/2,0) & L(1/2,1/2)-module structures on L(1/2,1/16). There
are two highest weight vectors vy and ¢gvg in N and each of them generates L(1/2,1/ 16)
under the Virasoro algebra. Set 11116 = ¢ol £ 7]1 Then we have ¢ - 16 =41 ol 16.
Both of v 1 and v 1 are highest weight vectors and each of them generates L(1/2,1/16)

under the Vlrasoro algebra Denote the Vir-modules generated over v i by L(1/2,1/16)%,
respectively. Then we have N = L(1/2,1/16)" @ L(1/2,1/16)". Note that L(1/2,1/16)"
and L(1/2,1/16)~ are isomorphic as Vir-modules but they are not isomorphic to each

other as Ay-modules. Consider the generating series
=D o
nez

By direct calculations one can show that ¢(z) is local with itself and satisfies the derivation
property [LY(—1),¢(z)] = 9.¢(z). Now consider a local system on N containing ¢(z).
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Since the powers of z in ¢(z) lie in Z + %, we have to use the twisted normal ordered

product in [Li2]. Define a generating series L(z) of operators on N by

1
1 _ 3
L(z) = éReSZOReszlzo’2 (Zl ZO)

zZ2

X {2’0_15 (Zl — Zz) ¢(21)d(22) + 250 (_ZZ—M> ¢(Z2)¢(21)} :

20 20

Then we have the following by a direct computation.

Lemma 7.1.3. L(z) = ZLN(n)z_"_Q, where LN (n) are defined by (7.1.2).

neZ

Thanks to the above lemma, we can find a Zo-twisted L(1/2,0) @ L(1/2,1/2)-module
structure on L(1/2,1/16)%. We will associate a vertex operator on N for every element
in L(1/2,0)® L(1/2,1/2). And then we prove that these vertex operators define a homo-
morphism of vertex superalgebras. Set Yy(1,z) := idy, and define inductively a vertex

operator of ¢_n+%a on N by

1
1 — 2
YN(?/’—M%G’ z) = §ReSzOReSZIZO’” (Zl ZO)

zZ9

X {20_15 (Zl — ZQ) ¢(21)Yn(a, 22) — (1)l z516 <_22—+21> YN(a7ZQ)¢<Z1)} :

20 20

where a = ¢_n1+% .- -@D_n”%]l, n>mny >--->mn, >0, and |a| denotes the parity of a.
Then extend linearly on L(1/2,0) & L(1/2,1/2). Let A be a Zy-twisted local system on

N in which ¢(z) is contained (cf. [Li2]). It is shown in [Li2, Theorem 3.14] that 2 is a
vertex superalgebra under the Zs-twisted normal ordered product.

Lemma 7.1.4. The linear map L(1/2,0)® L(1/2,1/2) 5 a+— Yn(a, z) € A defined above

gives an vertex superalgebra homomorphism.

Proof: We should show that Yy(aumb,2) = Yn(a,z2) o Yn(b,2) for any a,b €
L(1/2,0)® L(1/2,1/2) and m € Z, where o, denotes the Zy-twisted m-th normal ordered
product in 2. We may assume that a = w_nﬁ% x -w_nkJr%]l, ng > -+ >np >0 We
proceed by induction on k. The case k£ = 0 is trivial and the case k£ = 1 is just the
definition. Assume that k£ > 1 and Yn(agmb, 2) = Yn(a, 2) 0., Yn (b, 2) holds for arbitrary
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be L(1/2,0) ® L(1/2,1/2) and m € Z. Take any n > n;. Then we have
YN <(¢—n+%a)(m)b7 Z)

- if 1 al-n
= Z(_l) < : )YN (Qﬂfnfw%a(mﬁ)b_ (=1 A(ntm—i) it 10, Z>

=30 () {66 o Vil
—(=1D)l="Yx(a, 2) 0 pim—i YN(IDH;Z% Z)}
— i(—l)i (—n) {qb(z) O_p_; (YN(C% 2) om+i Yo (b, Z)>

—(=D)l="Yx(a, 2) 0 pim—i (gzﬁ(z) o; Yn (b, 2)) }

= (gb(z) o_, Yn(a, z)> o Yn (b, 2) by the iterate formula in A
=Yy <¢7n+%a, Z) Om YN<b7 Z)'

Therefore, by induction, the mapping M > a — Yn(a, z) € 2 defines a vertex superalge-
bra homomorphism. 1

Let V' be an arbitrary SVOA. By Proposition 3.17 in [Li2], giving a Zs-twisted V-module
structure on N is equivalent to giving a vertex superalgebra homomorphism from V'
to a local system of Zy-twisted vertex operators on N. Since both L(1/2,1/16)" and
L(1/2,1/16)~ are stable under the action Yy(-,z) define as above, we arrive at the fol-

lowing conclusion:

Theorem 7.1.5. The following Zo-twisted Jacobi identity holds on N:

— A1 & 2tz
20 '6 ( - o) 2) Yn(a,z1)Yn(b, 22) — (_1)E(a’b)zo ' (%) Y (b, 22)Yn(a, 21)
e(a,a)/2
1 [ 72tz Z2 + 2
=2 1 ( 2 0) ( 2 0) YN(YM(CL, Zo)b, 22)7
Z1 21

where a,b € M = L(1/2,0) ® L(1/2,1/2) and (-, -) denotes the standard parity function.
Therefore, the vertex operator map Yn(-,2) defines inequivalent irreducible Zs-twisted
L(1/2,0) & L(1/2,1/2)-module structures on L(1/2,1/16)*.

Remark 7.1.6. The vertex operator Yy(+, z) gives L(1/2,0)-intertwining operators of type
L(1/2,0) x L(1/2,1/16) — L(1/2,1/16) for § = 0,1/2. Therefore, Theorem 7.1.5 gives
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another proof of Proposition 4.1 and 4.2 of [M3]. In particular, by the explicit construc-
tions above, we can perform explicit calculates of all the intertwining operations of any

type for the unitary Virasoro VOA L(1/2,0) by using the symmetry of fusion rules.

7.2 Miyamoto involution

Let us consider the fusion rules for the unitary Virasoro VOA L(¢y,,0) with ¢, = 1 —
6/(m + 2)(m + 3), m € N. Recall that the set of inequivalent irreducible L(c,,,0) is
{L(cm, W) |1 < s < r < m+1}, where h2 are defined by (5.4.1), and their fusion
rules are given by the formula (5.4.2). Since hgf JZQ_nm 135 = hg?), we can find the following
Zs-symmetry in the fusion algebra for L(c,,,0).

Lemma 7.2.1. The following linear map defines an automorphism of the fusion algebra
for L(cpm,0):

(=) on L(cm,hﬁ’,?)) if m is even,
(=1)**Y on L(cm, %) if m is odd.

Then by Proposition 3.8.9/ the above Zs-symmetry will lift to be an involutive auto-

morphism of a vertex operator algebra:

Theorem 7.2.2. ([MI1]) Assume that a vertex operator algebra V' contains a sub VOA
(U, e) isomorphic to the unitary Virasoro VOA L(c¢p,0). Then we have a decomposition
V = ®1cscrempt VIR with VRV := L(cm, %) @ Homy (L(cm, K2, V). Define the
linear map 7, which acts on V(R'D) as (=1)+! if m is even and as (—1)**' if m is odd.

Then 1. is an automorphism of a vertex operator algebra V.

Proof: By Proposition 3.8.9 the vertex operator map Yy (-, 2) can be written as a
sum of tensor products I(-,z)® J(-, z) where I(-, z) are L(cp,,0)-intertwining operators
and J(-,z) are complement of I(-,z) in Yy (-,z). Therefore, the automorphism of the
fusion algebra for L(c,,,0) can be extended to be that of the vertex operator algebra
structure on V. 1

Among the unitary series, the first the first unitary Virasoro VOA L(1/2,0) is espe-
cially important. It is a rational VOA of CFT-type and has exactly three irreducible
modules L(1/2,0), L(1/2,1/2) and L(1/2,1/16) (cf. [DMZ] [Wan]), which we have con-
structed explicitly in the previous subsection. By Proposition 2.6.2 we can also verify
that L(1/2,0) is Cy-cofinite. The fusion rules are as follows:

L(1/2,1/2) x L(1/2,1/2) = L(1/2,0),
L(1/2,1/2) x L(1/2,1/16) = L(1/2,1/16), (7.2.1)
L(1/2,1/16) x L(1/2,1/16) = L(1/2,0) + L(1/2,1/2),
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where L(1/2,0) is of course the identity. One can directly check that the fusion algebra
for L(1/2,0) is associative and L(1/2,0) and L(1/2,1/2) are simple currents. Let V be a
VOA and (U, e) be a sub VOA of V isomorphic to L(1/2,0). Then the involution defined
in Theorem 7.2.2/is as follows:

.= 1 onV(0)®V(1/2) and —1 on V(1/16),

where V' (h) = L(1/2,h) ® Homy (L(1/2,h),V) for h = 0,1/2,1/16. If 7. is trivial on V,
then there is no component V(1/16). Then the linear map

ge:=1 onV(0) and —1 on V(1/2),

also defines an automorphism on V' by the fusion rules (7.2.1). These automorphisms are
often called Miyamoto involutions.

Remark 7.2.3. Tt is shown in [M1] that the first Miyamoto involution 7, belongs to the
2A-conjugacy class of the Monster M for any sub VOA (L(1/2,0),e) of the moonshine
VOA. Moreover, the correspondence (L(1/2,0),e) < 7. € M is one to one by [C].

Remark 7.2.4. Let A be the set of all conformal vectors with central charge 1/2 in V.
Then the subgroup E generated by the first Miyamoto involutions {7, | e € A} a normal
subgroup of Aut(V). Consider the fixed point subalgebra V¥. Then it is shown in [MI]
that the subgroup of Aut(V¥) generated by the second Miyamoto involutions {c, | ¢ € E}
is a 3-transposition group.

7.3 Code VOAs

Definition 7.3.1. A simple vertex operator algebra (V,w) is called 24-framed if there is
an orthogonal decomposition w = e' + -+ + €™ such that each e’ generates a sub VOA
isomorphic to L(1/2,0). The decomposition w = e + -+ 4 €™ is called a 2A-frame of V.

Remark 7.3.2. As we have seen in Section 6.4, the Leech lattice VOA V) and the moon-
shine VOA V¥ are examples of 2A-framed VOAs.

Let (V,w) be a 2A-framed VOA with a 2A-frame w = e!' + .-+ +¢". Set T :=
Vir(e!) ® - - - @ Vir(e™), where Vir(e') denotes the sub VOA generated by e’. Then T ~
L(1/2,0)®™ and V is a direct sum of irreducible T-submodules ®!_ , L(1/2, h;) with h; €
{0,1/2,1/16}. For each irreducible T-module ®!_, L(1/2, h;), we associate its 1/16-word
(o, -+ ,ap) € (Z/2Z)" by the rule o; = 1 if and only if h; = 1/16. For each a € (Z/2Z)",
denote by V¢ the sum of all irreducible T-submodules whose 1/16-words are equal to «
and define a linear code S C (Z/2Z)" by S = {a € (Z/2Z)" | V* # 0}. Then we have
the 1/16-word decomposition V = @,esV® of V. By the fusion rules (7.2.1), we have an
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S-graded structure V¢ - V% c Vots for all o, 3 € S. Namely, the dual group S* of an
abelian 2-group S acts on V', and we find that this automorphism group coincides with the
1 <i<n}.
Therefore, all Ve, a € S, are irreducible V" = V%module by the quantum Galois theory
(cf. [DMI]). Since there is no L(1/2,1/16)-component in V°, the fixed point subalgebra
V? has the following shape:

elementary abelian 2-group generated by the first Miyamoto involutions {7,

.....

hi€{071/2}
where my, ., denotes the multiplicity. On V® we can define the second Miyamoto
involutions o for ¢ = 1,...,n. Denote by () the elementary abelian 2-subgroup of

Aut(V?) generated by {o.: | 1 < i < n}. Then by the quantum Galois theory we have
(V9L =T and each my,.... p, L(1/2,h) ® -+ - ® L(1/2, hy,) is an irreducible T-submodule.
Thus mp, ... p, € {0,1} and we obtain an even linear code D := {(2hq,---,2h,) €
(Z)2Z)" | mp, ... p, 7# 0} such that

Vi= P L1/2.0/2) @@ L(1/2,0,/2). (7.3.1)

a=(ay,,on)€D

The sub VOA V° with the linear code D is called a code VOA. Since all V¢, o € S,
are irreducible modules for V9, the representation theory of V° is important to study a
2A-framed VOA V. We present in the next subsection that there exists a simple VOA of
the shape (7.3.1) for every linear even code D.

7.3.1 Construction of code VOAs

Let (Z/2Z)™ be the linear code of length n. We denote by (:,-) the inner product on
(Z)2Z)" defined as (o, 5) = >0, auf3; for a = (v, -+ , ), B = (B, ..., B,). Consider
the following central extension of (Z/27Z)" by a group {£1} of order 2:

1 = Zy = {£1} — (Z/22)" & (Z)2Z)" — 1. (7.3.2)

Take a section e : (Z/2Z)" > o +— e* € (Z//\2Z)” such that ¢ = 1. Then we obtain a
2-cocycle € € Z2((Z/2Z)",{+£1}) such that e* - e’ = e(a, B)e*"?. Tt is shown in [FLM]
that the central extension (7.3.2) determines the second cohomology class of € uniquely
and that the set of inequivalent classes of the central extension (7.3.2) is in one-to-one
correspondence with the secondo cohomology group H?((Z/2Z)", {£1}). Define the com-
mutator map c(«,3) = e(a, f)e(f,a) for a, 5 € (Z/2Z)". We construct an central
extension whose commutator map is c(a, 3) = (—1){@f+H@aB6) =~ Set 4, = (1,0,...,0),
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v =(0,1,...,0),...,7 = (0,0,...,1). Then {71,...,7,} is a basis of (Z/2Z)". Define
a 2-cocycle é € Z%((Z/2Z)",{+1}) bilinearly as follows:

€(vi,v;)=—1 if i>j and 1 otherwise.

Since ¢ is bilinear, clearly ¢ € Z?((Z/2Z)",{+£1}), and by a direct calculation one can
verify that é(a, 3)é(83,a) = (1)@ B0 for any a, 3 € (Z/2Z)". In the following
we fix the cocycle € defined as above.

Recall the SVOA M = L(1/2,0) & L(1/2,1/2) constructed in Section 7.2.1. For a
while we set M° = L(1/2,0), M' = L(1/2,1/2) and we denote the vertex operator map
on M by Yy (+, z) as in Section 7.2.1. Consider a tensor product U := M®™ of n copies
of M. For each a = (v, ..., ) € (Z/2Z)" we set U* := M* ®---®@ M* C U. Then
U= (M*)®" ~ L[(1/2,0)®™ and we have a decomposition

v= & v~

a€(Z/2Z)™
Let 1' and w’ be respectively the vacuum vector and the Virasoro vector of i-th M° of
U° = @7, M°. We often identify w’ with ' ® - - ®@uw' ®---® 1" € U°. Set
Yol @ @a™ 2) ==Yy (2!, 2) ®- - @ Yy (2", 2)
for x' ®---®@a™ € U. Since M is an SVOA, we have the following commutator relation:

Lemma 7.3.3. On U we have Yy (2%, 2)Yy(2?, 2) ~ (=1) @AYy (2%, 20) Yy (2P, z1) for
r® € U® and 2° € UP, where A(z1,z) ~ B(21, 22) means that there is a positive integer

N > 0 such that (z1 — 22)N A(21, 29) = (21 — 22)V B(21, 22).

Therefore, (U, Yy (-, z)) do not form an SVOA and we have to modify the vertex oper-
ator map to obtain a desired relation. Set

Yy (2, 2)2? = é(a, B) Yy (2%, 2)2”
for € U® and 2° € UP. Then we have
YU(ZEa, Zl)YU(l’ﬁ, 22) ~ (_1)(a,a>(ﬁ,ﬁ)YU($B7 ZQ)YU(:UO[, Zl) (733)

on U for any ¢ € U® and 2° € UP. Set E(Z/2Z)" := {a € (Z/2Z)" | {a,a) =
0}, O(Z)2Z)" = {a € (Z/2Z)" | (a,a) = 1} and UQ = @,cpzm)n U, UY =
@Bacoz/2z»U. Then by (7.3.3) the vertex operator map Yy (-, z) satisfies the commuta-
tivity and hence we have an SVOA structure on U = U® @ UM,

Theorem 7.3.4. The structure (U, Yy (-, 2)) is a simple SVOA with even part U and odd

part U | where the vacuum vector is 1' ® - - - ® 1" and the Virasoro vector is w' +- - -+w",
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Thus we also have

Corollary 7.3.5. ([M2]) Let D be an even linear subcode of (Z/27)". For each code
word a = (g, -+ ,a,) € D, set U* := L(1/2,01/2)®--- @ L(1/2, v, /2). Then there is a
unique simple vertex operator structure on Up := @aepU® as a D-graded simple current
extension of U° = L(1/2,0)®".

Proof: Since we can find Up as a sub VOA of the vertex operator superalgebra given
in Theorem [7.3.4, Up has a simple vertex operator algebra structure. It is clear that all
U®, o € D, are simple current U%-modules with fusion rules U® x U? = U**?. Then by
Theorem 4.2.3 the VOA structure on Up is unique over C. 1

By the corollary above, for each even linear code D we always have a simple vertex
operator algebra with the shape (7.3.1). The VOA Up constructed as above is called the
code VOA associated to a code D (cf. [M2]).

7.3.2 Representation of code VOAs

Let D be an even linear subcode of (Z/27Z)" and let Up = @nepU® where U* =
", L(1/2,0;/2) be the associated code VOA constructed as in the previous subsec-
tion. Since Up is a D-graded simple current extension of a rational Cs-cofinite VOA
U° = L(1/2,0)®" of CFT-type, Up is also rational and Cs-cofinite. In this subsection we
study irreducible Up-modules in detail.
Let (X,Yx(-,2)) be an irreducible Up-module. Then M as a U’-module is com-
pletely reducible and so we can take an irreducible U°-submodule W of X. Since U° ~
L L(1/2,0), W o~ ®, L(1/2,h;) with h; € {0,1/2,1/16}. Define the 1/16-word
a(W) = (o,...,an) € (Z/2Z)" of W by o; = 1 if and only if h; = 1/16. Then by the
fusion rules (7.2.1) we find that the word (W) is independent of the choice of an irre-
ducible component W and so we can define the 1/16-word of X by 7(X) := a(W). Since
the powers of z in an L(1/2, 0)-intertwining operator of type L(1/2,1/2)x L(1/2,1/16) —
L(1/2,1/16) are contained in 1/2+7Z, we have 7(X) € D+ := {8 € (Z/2Z)" | (3, D) = 0}.
For a = (aq,...,ay,) € (Z/2Z)" we define D, := {3 € D | Supp(8) C Supp(a)},
where we identify (Z/2Z)"™ with the power set of n-point set {1,2,...,n} and we have
set Supp(«) := {i | s = 1}. Then by the fusion rules (7.2.1) we have Dy = {a € D |
U W ~W} = Dy By Theorem 4.4.7, Up,, - W is an irreducible Up,, -submodule of
X and there is a central extension

1—C"— Dy — Dy — 1 (7.3.4)
such that Up,, - W is linearly isomorphic to

Upy W ~WaP
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with some irreducible C*Dy]-module P, where the 2-cocycle A\ € Z%(D,C*) is deter-
mined by the central extension (7.3.4). Let us determine the 2-cocycle A\ explicitly.
We may assume that 7(X) = (0°1"*). Let Y (-,2) be the vertex operator map on
M = L(1/2,0) @ L(1/2,1/2) and Yy(-,2) the vertex operator map on the Z,-twisted
L(1/2,0)® L(1/2,1/2)-module L(1/2,1/16)" which we have constructed in Section 7.2.1.
Then the vertex operator map Yx(+,z) on X can be written as

Yx(a'®@ - ®@a™, 2)w@v
=Yu(a',2)® - @Yy(a®, 2) @ Yy(a*™ 2) @ - - @ Yy (a™, 2)w @ m(a)v

fora'®---@a"” € U% a € Dy, and w®v € W ® P, where 7 : C*|Dy| — End(P) is the
representation map such that m(a)w(5) = Mo, B)m(a+ () for o, f € Dy. We know that
Yar(+, 2) and Yy (-, z) satisfy the following associativity:

(20 + 22)"Yar(a, 20 + 22)Yar (b, z2)ut = (22 + 20)" Yar (Yar(a, 20)b, 22)ul,
(20 + 22)"2 Y (a, 20 + 22) Yo (b, 20)u® = (22 + 20)" Vv (Yar (@, 20)b, 20)u?,

for a,b,u' € M, u* € L(1/2,1/16)*, k; € N and ky € 3N. On the other hand, since
Yo, ('@ @a™, 2)b' @ @b" = é(a, B)Yy(a', 2)b' @ - - Yar(a”, 2)b"
fora'®---®a" € U%and b' ®---®b" € UP, a, 8 € D, we have the following relation:
m(a)m(3) = é(a, B)m (o + B).

Therefore, the cocycle A is cohomologous to the cocycle € and we can replace the central
part of the central extension (7.3.4) by Z; = {£1} C C*. Namely, the central extension
(7.3.4) is essentially the same as the following one:

1 — Zy — Dy — Dy — 1. (7.3.5)
Thus we have
Lemma 7.3.6. The space of multiplicity Homyo (W, M) is an irreducible C¢[Dy]-module.

Remark 7.3.7. One can also show that the 2-cocycle A in the definition of the twisted
algebra A,(D, Sw) (cf. Section 4.3) associated to a pair (D, W) is given by €.

Set C¢[Dw] = Spanc{e® | « € Dy} with products e®e’ = é(a, 3)e*P. Let Ey be
a maximal self-orthogonal linear subcode of Dy,. Then € vanishes on Ey and so the
subalgebra C¢[FEy,] of C¢[Dyy| is isomorphic to the group ring C[Ey].
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Lemma 7.3.8. Let x be a linear character on Ew and Cuvy a linear representation of
Eyw affording the character x. Then Indgg:v“]’]((:vx is an irreducible C¢[Dy]-module such
that the central part Zo = {£1} of (7.3.5) acts faithfully. Conversely, every irreducible
C¢[Dw]-module on which the central part Zs of (7.3.5) acts faithfully is given by an induced

module described as above.

Proof: A C¢[Dy]-module is equivalent to a module for the central extension Dy in
(7.3.5). Since Dy, is a central product of an abelian group and an extra-special 2-group,
we may assume that ﬁW is an extra-special 2-group. In this case Ey C Dy and the
preimage Ew of Ew in Dy is a maximal abelian subgroup of Dyw. Thus the induced
module Indg}a“]’](CvX is not a linear representation of DW. Since every irreducible non-
linear module for an extra-special 2-group is induced from a linear character of its maximal

abelian subgroup, the assertion holds. 1

By the lemma above, we can classify all irreducible modules for a code VOA Up

according to Theorem 14.5.2.

Theorem 7.3.9. ([M3]) Let v € Dt. Let E be a mazimal self-orthogonal subcode of
D, and x a linear representation of E. Let ¢ be an irreducible representation of C¢[D,]
induced from x. For any irreducible U°-module W with 1/16-word -y, the induced module
Indgg7 (W, ) which is given by Theorem 4.5.2 is an irreducible Up-module. Conversely,
every irreducible Up-module is isomorphic to one of the irreducible modules constructed

as above.

Remark 7.3.10. If v € D\ D+, then the module Indgg (W, ¢) in the above theorem is an
irreducible Zs-twisted Up-module by Theorem 4.5.2.

Let us consider the case 7(X) = (0"). In this case there is no L(1/2,1/16)-component
in X and hence X is a direct sum of tensor products of L(1/2,0) and L(1/2,1/2). In this
case one can easily see that there is a unique coset a + D of (Z/2Z)™ such that

_ @ L(1/2,3,/2) ® - - L(1/2, 8,/2).

Since X has a D-grading consistent with the action of Up, X is a D-stable irreducible
Up-module. Therefore, the Up-module structure of X is uniquely determined. Such a

Up-module X is called a coset module of Up and denoted by Up,,.

Proposition 7.3.11. All Upia, « € (Z/27)", are simple current Up-module and the
fusion rules Upio X Upyp = Uptasp hold for all o, 5 € (Z/2Z)".

Proof: To prove that Up, is a simple current, it is sufficient to prove that Up,, X
Upia = Up by Lemma 4.1.2 because Up is a rational Cs-cofinite VOA of CFT-type.
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Thus we only prove the fusion rule above. By Theorem 4.4.9 we have a non-trivial Up-
intertwining operator of type Upto X Upsg — Upia+s. On the other hand, let X be a
non-trivial irreducible Up-module such that there is a non-trivial Up-intertwining operator
of type Up+q X Upys — X. Since Upt, and Up,p are D-stable irreducible Up-modules,

the space of intertwining operators ( is linearly isomorphic to

Upia UD+a> Up

: )
L(1/2,31/2) @~ @ L(1/2,8,/2) ) o

by Theorem 14.4.9. Then by the fusion rules (7.2.1), X must contain ®7 ; L(1/2,;/2)
with v = a +  and so 7(X) = (0"). Then the Up-module structure of X is uniquely
determine and hence X ~ Up,,. Thus the assertion holds. 1

(L(l/z,al/m@-..®L<1/2,an/2>

Remark 7.3.12. We note that in the construction of the SVOA U(z/97)», we have already
constructed a Up-intertwining operator of type Upia X Upig — Upta+s-

7.3.3 The Hamming code VOA

Let Hg be the [8, 4, 4]-Hamming code:
Hy := Spany, 5, {(11111111), (11110000), (11001100), (10101010)}.

It is well-known that Hg is the unique doubly even self-dual linear code of length 8 up
to isomorphism. Let us consider the Hamming code VOA Upy,. Since Hyg is self-dual, the
2-cocycle € vanishes on Hy so that in the definition of the vertex operator map on Uy, we
do not have to use it. In order to reconstruct the moonshine VOA as a 2A-framed VOA,
we will need some special properties that the Hamming code VOA Uy, has. Roughly
speaking, we can identify L(1/2,1/16) with L(1/2,0) and L(1/2,1/2) by the symmetry
of the Hamming code VOA.

Let X be an irreducible Uy,-module whose top weight is in N. Then 7(X) = (0%)
or (18) and if 7(X) = (0%) then X ~ Uy, for some v € (Z/27Z)%. If 7(X) = (1), then
(Hg)(1s) = Hs and so there is a linear character x on Hg such that

X ~ Indj#* (L(1/2,1/16)2%,x) = L(1/2,1/16)** @ v,, (7.3.6)
C

where Cv,, is a linear representation of Hg affording the character y, by Theorem [7.3.9.
Since the dual group Hj of Hg is naturally isomorphic to (Z/2Z)%/Hs, we can find a
unique coset §, + Hg € (Z/27)®/Hg such that x(a) = (d,,«) for all @ € Hg. So in the
following we regard x as an element in (Z/2Z)%. Set H(1/16,x) = L(1/2,1/16)®% @c v,
for x € (Z/2Z)%. Then H(1/16,x1) ~ H(1/16, x2) as Uy,-modules if and only if x; —x2 €
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Hg and the set of inequivalent irreducible Up,-modules whose top weights are contained

in %N is given by
{UH8+’Y7 H(1/167 X) | Y + H87 X + HS € (Z/2Z>8/H8}

Surprisingly, we can identify a non-simple current L(1/2,0)®®-module L(1/2,1/16)®®
with a coset module as follows:

Proposition 7.3.13. ([M/]) For each H(1/16,x) with x € (Z/2Z)3, there is an auto-

morphism o € Aut(Upg) such that the o-conjugate module H(1/16, x)7 =~ Upyy for some
v € (Z)2Z)® with (y,v) = 1. In particular, H(1/16,x) is a simple current Ugy,-module.

Proof: This is the one of the main results in [M4]. Here we give a brief explanation.
It is shown in [M4] that there are exactly three 2A-frames in Uy, and these frames are
conjugate under the second Miyamoto involutions associated to the 2A-frames in Ug,.
Thus by permuting 2A-frames we can find the desired isomorphism. For more details, see
[M4]. 1

Corollary 7.3.14. ([M})]) As a Zsy-graded simple current extension of Uy, there is a
unique simple SVOA structure on U, @ H(1/16,x) for all x € (Z/2Z)".

Proof: We can take an irreducible Upy,-module Upgi, with (7,7) = 1 such that
there is an automorphism o € Aut(Upy,) such that the conjugate module (Upgyt)? is
isomorphic to H(1/16, x) by Proposition 7.3.13. Then Uy, ® Upyy and Uy, & H(1/16, x)
form equivalent Zo-graded simple current extensions of Up,. Since Hg U (Hg + ) is an
odd code, U, @ Upytr is a simple SVOA. Then so is Uy, & H(1/16, ). ]

As an application of Proposition [7.3.13, the following fusion rules are established in
[M4]:
Theorem 7.3.15. ([M/}]) We have the following fusion rules:

Uts+a X Utig+8 = Utig+a+;
UHs-‘rOc X H(1/16aﬁ> = H(1/1675+a)a
H(1/167O[) X H(]_/]_G,B) = UH8+OZ+B7

where o, 3 € (Z)27)8.

Thanks to Corollary [7.3.14 and Theorem [7.3.15, if an even linear code D contains
many subcodes isomorphic to the Hamming code Hg, then we can construct simple current
extensions of the code VOA Up by using Theorem 4.6.1.
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7.4 2A-framed VOAs

Let (V,w) be a 2A-framed VOA with a 2A-frame w = e' + --- + €. Then V as a
T = Vir(e') ® - - - ®@ Vir(e")-module is completely reducible and we have an even linear
code S C (Z/2Z)" and an S-graded decomposition V = @,ecsV* where V¢ is a sum of all
irreducible non-trivial T-modules whose 1/16-words are all equal to o € S. By definition
VY has no component isomorphic to L(1/2,1/16) and hence there is an even linear code
D C (Z/2Z)" such that V? is isomorphic to the code VOA Up. Since we have assumed
that V' is simple, all V¢, a € S, are irreducible Up-modules, and by the fusion rules
(7.2.1), we have an S-graded structure V- V# = Vo*0 for a, 3 € S. Thus we can view
V as an S-graded extension of V = Up. We also note that D C S+ as all V¥, o € S,
are untwisted Up-modules. Summarizing, for a 2A-framed VOA V', we can obtain a pair
of codes (D, S) such that V = @aesVe, VO ~ Up and D C S+. We call a pair (D, S) the

structure codes of V.

Theorem 7.4.1. (|[DGH]) Every 2A-framed VOA is rational Cy-cofinite and of CFT-type.

Proof: Since V is a module for T = Vir(e!')®---® Vir(e"), it is clear that V is
Cy-cofinite and of CFT-type. So we only need to prove that V' is rational. Let (D, S) be
the structure codes of V. Take a V-module M. Then M is also a Up-module. Let W be
an irreducible Up-module and 7(W) € Dt the 1/16-word of W. Then by Lemma [4.4.1
and Remark 4.4.2/all V- W, o € S, are irreducible V® = Up-modules. Moreover, by the
fusion rules (7.2.1), the 1/16-word of V- W is a + 7(W). Therefore, V- W 2% VA . W
whenever a # (8 and we have an S-graded decomposition V - W = @,esV* - W. This
implies that V- W is an irreducible V-module for any irreducible V°-submodule W of M.
Hence, M is a completely reducible V-module. 1

Theorem 7.4.2. (|[DGH] [M5]) Let V' be a 2A-framed VOA with structure codes (D, S).
If D = S+, then V is holomorphic, i.e., any irreducible V -module is isomorphic to V.

Proof: We have shown that V' is rational. Let M be an irreducible V-module. Then
we have to prove M ~ V. Let W be an irreducible V° = Up-module. Then the 1/16-
word 7(W) is in D+, Since D+ = S, V™) o£ 0 and the 1/16-word of V™) . W is 0.
Namely, V"W). W as a Up-module is isomorphic to a coset module U D4y Since Up.yy
is a simple current Up-module, we have fusion rules Up, x VA = (VW) . W) for all
B € S. One can easily see that the powers of z in an Up-intertwining operator of type
Upiy X VB — (VW) W) are contained in (v, 3)/2 + Z by the fusion rules (7.2.1).
Thus (v, 3) = 0 modulo 2 and hence v € S+ = D. Namely, D +~ = D and hence M
contains Up as a Up-submodule. Since Up x V* =V, M as a Up-module is isomorphic
t0 PaesV* = V. Let ¢ : V. — M be a Up-isomorphism. Then ¥ (1y) is not zero and
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satisfies L(—1)y(1y) = 0. Therefore, ¥ (1y) is a vacuum-like vector of M and hence M
as a V-module is isomorphic to V' by Lemma 3.4.3. 1

7.4.1 Construction of 2A-framed VOAs

In this subsection we construct certain 2A-framed VOAs. Here we assume the following:
Hypothesis 1.

(1) (D, S) is a pair of even linear even codes of (Z/27Z)" such that
(1-i) D C S+,
(1-ii) for each o € S, there is a subcode E* C D such that E* is a direct sum of the Hamming code

(2) VO = Up is the code VOA associated to the code D.

(3) {V¥| a € S} is a set of irreducible V%-modules such that
(3-1) 7(V*) = a for all « € 5,
(3-ii) all V¥, a € S, have integral top weights,

(3-iii) the fusion product V' Kyo V? contains at least one V4. That is, there is a
non-trivial V-intertwining operator of type V¢ x V# — Vo5 for any o, 3 € S.

Under Hypothesis I we will prove that V' := &,c5V* has a structure of an S-graded simple

current extension of VY. Before we begin the proof, we prepare some lemmas.

Lemma 7.4.3. Under Hypothesis I, all V*, o € S, are simple current V°-modules and
we have the fusion rules V® x VB = Vo8 of VOmodules for all o, B € S.

Proof: Suppose the fusion rule V¢ x V* = V9 of V% modules holds. Then by
Lemma 4.1.2, V is a simple current V°module because V? = Up is a rational Cs-
cofinite VOA of CFT-type. Then by Hypothesis I (3-iii) we have the desired fusion rule
Ve x VB = Vet8 Therefore, we only prove the fusion rule Ve x V® = VO for each a € S.
By Hypothesis I (1-i), D contains a subcode E* which is isomorphic to a direct sum of
Hg and Supp(E*) = Supp(a). So we may assume that o = (130%) with 85+t = n. Then
Up contains a sub VOA

L= Upe ® L(1/2,0)! ~ (Up,)®* @ L(1/2, 0)%"

and V* as a Uge ® L(1/2,0)®*-module contains an irreducible submodule X isomorphic
to

with x; € (Z/2Z)%, 1 < i < s, and h; € {0,1/2}, 1 < j < t. Let D = UF ((E*+ 3)
be a coset decomposition. We write (3; = ~; + d; such that Supp(y;) € Supp(a) and
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Supp(d;) N Supp(a) = @. Then Uga, g, is isomorphic to
Upey, @ L(1/2, (6i)8541/2) © - -+ @ L(1/2, (6:)n/2)

as an L-module and Up = @leU getp s a D/E*-graded simple current extension of L.
Then by the fusion rules (7.2.1) and Theorem [7.3.15, (Ugayg,) W, X is an irreducible
L-module and (Ugayg,) M X % (Upeys,) XX as Uge ® L(1/2,0)®*-module unless i = j.
Therefore, V® as an L-module is isomorphic to V® = @F_(Vga,s,) Xy X. Namely, V®
is a D/E“-stable Up-module. Then by Theorem 14.4.9 together with fusion rules (7.2.1)
and those in Theorem [7.3.15, we have a fusion rule V¢ x V¢ = V° of Up-modules which
is a lifting of the fusion rule X x X = L of L-modules. 1

Lemma 7.4.4. Under Hypothesis I, the space VOBV forms a simple VOA as a Zsy-graded

simple current extension of V° for each o € S'\ 0.

Proof: Here we use the same notation as in the proof of Lemma 7.4.3 By the coset
decomposition D = UE (E* + 3), V° = Up = &F |Uga,p, is a D/E*graded simple
current extension of L = Uga ® L(1/2,0)%" ~ (Uy,)®*® L(1/2,0)®". By the fusion rule
X x X = L of L-modules, X is a simple current L-module. Then by the associativity
of fusion products (cf. Theorem 3.7.6), an irreducible L-module (Ugayg,) K X is also a
simple current. Thus we obtain the set of inequivalent simple current L-modules

S = {UEO‘-i-ﬁi? (UE"‘+ﬁj) Xy X | 1<i4,5< k}
with the following ((D/E%) & Zs)-graded fusion rules:

Upeqp; X Upeys; = Upeyp4s;,
UEO‘—Fﬁi X (UEa-i-ﬁj Xy X) = (UE"‘+5i+ﬁj) X, X,
(Upoip W X) X (Ugosg,) Wy X = Upoyp,45,-

Since Up = ®%_Uga,p, has a structure of a D/FE%-graded simple current extension of
L and L & X has a structure of a Zs-graded simple current extension of L by Corollary
7.3.14, we can apply Theorem 4.6.1l to S and hence we obtain a ((D/E®) & Z,)-graded

simple current extension

{@F_Ugaip,} @ {&F, (Ugaip,) B X}

of L. Since V' = @F ;Ugayp, and V* = &F | (Uga,p, )X X, the Zs-graded space VO V™
carries a simple VOA structure which is the desired Zs-graded simple current extension
of V0. 1

Now we can prove
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Theorem 7.4.5. ([M/]) Under Hypothesis I, the space V.= BoesV* has a unique struc-
ture of a simple VOA as an S-graded simple current extension of VO. In particular, there
ezists a 2A-framed VOA whose structure codes are (D, S).

Proof: Let {ai,...,a,} be a linear basis of S and set S* := Spang o, {ay, ..., o}
for 1 < i <r. We proceed by induction on 7. The case r = 0 is trivial and the case r =1
is given by Lemma [7.4.4. Now assume that @cg:V” has a structure of a simple VOA for
1 <4<y —1. Then the set

T = {Vﬂ, Vﬂ+ai+1 ‘56 Si}

consists of inequivalent simple current V°-modules with (S® @ Z,) = S !-graded fusion

rules:

VB x VP2 = VBl"FﬁQ’ VB x VBPtait — Vﬁ1+ﬂz+a¢+1’ VBitaitr Bty — V/B1+82

where (31,3, € S°. By inductive assumption, @gc5:V7 is an S’-graded simple current
extension of V°, and by Lemma [7.4.4, a direct sum V° @ V+! becomes a Zy-graded
simple current extension of V. Therefore, we can apply Theorem [4.6.1 to 7 to obtain
the S™*!-graded simple current extension @gcgir1 V' of VO, Repeating this procedure, we
finally obtain S” = S-graded simple current extension V = @,csV® of V0 = Up. 1

Remark 7.4.6. In [M4], Miyamoto assumed stronger conditions than those in Hypothesis I.
In particular, he assumed that the structure codes (D, S) are of length 8% for some positive
integer k. Our refinement enable us to construct 2A-framed VOAs with structure codes
of any length as long as Hypothesis I is satisfied.

7.4.2 Transformation of structure codes

In the rest of this section we consider a transformation of structure codes of a 2A-framed
VOA. One can easily verify the following.

Lemma 7.4.7. Let V', i = 1,2, be 2A-framed VOAs with structure codes (D', S"), i =
1,2, respectively. Then V'@ V? is also a 2A-framed VOA with structure codes (D' &
D' St @ 5?).

We will need the following proposition to construct the moonshine VOA.

Proposition 7.4.8. Suppose that V = G,ecsV® is a 2A-framed VOA with structure codes
(D, S) such that (D,S) and {V* | a € S} satisfy Hypothesis I. Let C' be an even code
such that D C C C S*. Then the induced module Indgg\/a giwen by Theorem 4.5.2 is
uniquely determined and is an irreducible untwisted Us-module for all « € S. Moreover,
a pair (C,S) and the set {IndggVa | @ € S} also satisfy Hypothesis 1.
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Proof: Since D C C, the code VOA Ug is a D/C-graded simple current extension
of VO = Up. Since C' C S+, we find that the powers of z in Up-intertwining operators
of type Upyg X V* — Upyp Wy, V are contained in Z for all 3 € C. Therefore, a Up-
module V¢ is lifted to be an untwisted Ug-module for each a € S by Theorem 4.5.2. We
show that the Us-module induced from a Up-module V¢ is unique up to isomorphism.
By considering a permutation on the coordinate set, we may assume that o = (1850")
with 8s + ¢ = n. Then Up and Ug contain a sub VOA Uge ® L(1/2,0)®" and V* has a
Uge ® L(1/2,0)®*-submodule of the form

X = H(1/167X04,1) & - - ‘®H(1/16aon,s> ®L<1/27h1) PIRERE ®L(1/27 ht)

with Xa; € (Z/27)%, 1 <i < sand h; € {0,1/2},1 < j <t Let C =017, (E*+) be a
coset decomposition of E* such that D = L% (E* ++;), k < m, is a coset decomposition
of D . Then Ug = &7 Uga ., and Up = &5 Uga ., are C'/E%-graded and D/E*-graded
simple current extensions of Uge ® L(1/2,0)®?, respectively. Since X is a simple current
Upe ® L(1/2,0)®"module and Uga,p, - X* % Upayg, - X* as Uga ® L(1/2,0)®*-modules
if i # j by (7.2.1) and Theorem [7.3.15, one sees that the induced Us-module

Indgga B L(1/2,02t X = Dty (Ugaty,) - X (7.4.1)

is uniquely determined and gives an untwisted irreducible Us-module. On the other hand,
we see that

a U a «
VE=Tndp? o1 meyee X = @by (Upaty,) - X

Therefore, the induced module Ind[U]g V@ is unique and given by (7.4.1). We also note that

Indgg V@ is a C'/D-stable Us-module. Therefore, we have a lifting fusion rule Indgg Ve x

Ind ¢ VP = Indy€Ve*# of Ug-modules from the fusion rule V& x VP = Vot of Up-

modules for o, € S by Theorem [4.4.9. Thus we have a pair of codes (C,S) and a

set of inequivalent simple current Us = Indgg V% modules {Indgg Vel a e S} satisfying

Hypothesis I. 1
As a corollary, we have:

Theorem 7.4.9. Let V = @,esV* be a 2A-framed VOA with structure codes (D, S).

(i) For a sub code S" of S, ®aecs'V* is a 2A-framed VOA with structure codes (D, S’).
(ii) Suppose that a pair (D, S) and the set {V* | a € S} satisfy Hypothesis I. Then for a
subcode C' with D C C' C S+,

IndfV := @ Indyove

seS

has a structure of a 2A-framed VOA with structure codes (C,.S).
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7.5 The moonshine VOA as a 2A-framed VOA

In this subsection we review Miyamoto’s reconstruction of the moonshine vertex operator

algebra by using Theorem [7.4.5.

7.5.1 [Eg-lattice VOA

Let Vg, the lattice VOA associated to the root lattice of type Fs. It is shown in [GH]
[M5] that Vg, is a 2A-framed VOA and there are exactly five inequivalent 2A-frames in
V. We recall one of them. Set

Spa = Spang 5, {(1'%), (1°0%), (1%0%1%0%), ({1100}%), ({10}")}

and Dp, := (Sg,)*. Then it is known that Sg, is a Reed-Miiller code RM (4,1) and D,
is a Reed-Miiller code RM (4,2).

Theorem 7.5.1. ([M5]) The lattice VOA Vi, is a 2A-framed VOA with structure codes
(DEsa SEs)'

Write Vg, = @aesp, Vi,- Then VR, ~ Upy, and all Vg, a € Sgq, are irreducible

Vg -modules.

Proposition 7.5.2. ([M5]) The pair (Dgg, Sg,) and the set {Vig | a € Sk} satisfy
Hypothesis I.

Proof: It is not difficult to see that a pair (Dg,, Sg,) satisfies the condition (1)
of Hypothesis I. Since Vg, = Gaesp, Vi, is an Spe-graded (simple current) extension of
Vi, = Upy,, the conditions (2) and (3) of Hypothesis I are also satisfied. 1

7.5.2 Construction of the moonshine VOA

We begin the Miyamoto’s construction. Set D(0) = Dg, & Dg, & Dg, and S(0) =
Sp, ® Sp, ® Sg,. Consider a tensor product

V(0) := Vi, ® Vg, ® Vg

of three copies of Vg,. Since Vg, = Baesp, Ve, 1s a 2A-framed VOA with structure codes
(Dpgg, Sgy) by Theorem [7.5.1, V'(0) is a 2A-framed VOA with structure codes (D(0), S(0)).
It is clear from Theorem [7.5.2 that the pair (D(0), S(0)) and the set {V(0)* | « € S(0)}
satisfy Hypothesis 1. Set

S(1) = {(a, a,a) € (Z/22)"® | a € Sp,} C S(0).
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and

EB V()= @ Vi e Vi VL.

aesS(1 BESEg

Then V(1) is a 2A-framed sub VOA of V(0) with structure codes (D(0),.S(1)). It is clear
that the pair (D(0),S(1)) and the set {V(1)* = V(0)* | « € S(1)} satisfy Hypothesis I.
Set & = (10%) € (Z/27Z)'® and

Q = {(0%), (£,€,0), (£0,6), (0,£,8)} € (2/22)
D(1) = D(0) + Q C (2/22)",

Then D(1) is an even code and satisfies D(1) C S(1)*. Then by Proposition [7.4.8 the
induced module
Upa)yra o o
In dUD(l)VE8 ® Vg, @ Vg,

is uniquely determined and is an irreducible untwisted Up;)-module for all @ € Sg,. Set
Wg, = Upp+e By, Vi, for 0 # a € Sg,. Then Wi 2 Vg as a Up, -module and we
8
have the following decomposition as a Upy) = Up 5 @ U Dy @ U D, -module:
Ub( (] (] (] a e e (] a a
I dUiEO; VE8 ® VEg ® VEg — vEs ® vEs ® vEs @ VES ® WES ® WEg
DWW VEIWE QWE Wg V..

Since the fusion products for U pp,-modules is associative and commutative, we have the
following fusion rules for Up, -modules:

Vi x Wg, = Vi X (Upgee X Vi)
= (V& x Vi) X Ubg,
= Vg;ﬁ X UDE8+§
= Wit (7.5.1)
ng X ng - (UDE8+§ X Vgg) X (UDE8+§ X VE"{8>
= (Upgyte X Upgre) x (VB x Vi)
= Vit
8 )
where «, 3,7 € Sg,. Now set
S¢ = Spany,p, {(11°019019), (010119019), (0190'°116), (a, 0,0) € (Z/22)"" | a € Sp}
={(o,a, ), (% a,a), (a,a ), (a,a,a) € (Z/2Z)*® | a € Sk}
and D% := (S%)*, where we have used a¢ to denote a code word (17) + « of (Z/27Z)" for
a € (Z/2Z)". Since dimy, /o, 5% =7, we have dimy /oy, D = 41 and it is easy to see

= {(B1, P2, 83) € ((Z/QZ)M)GB3 | 81+ B2+ (3 € D, 1, B2, 33 are even}.
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Since S* C S(0) by definition, D(0) C D and the pairs (D(0),S%) and (D%, S*%) satisfy
the condition (1) of Hypothesis I. Now we define V(2)%, 5 € S%, as follows:

V(2)@e) = Ve @ VE @ Vg,

(2)(@e0) = Wg @ Wg @ Vg,
(2)l@e%e) .= Wg @ Vg @ WE,,
(2)l@%ea) .= Vi, @ Wg, @ Wg,

< < <

where o € Sp,. Since the top weight of Wg , o € Sg, \ {0}, is contained in iN by the
fusion rules (7.2.1), the top weight of V(2)?, 3 € S is contained in N. And by the fusion
rules (7.5.1), the set {V(2)* | & € S*} of inequivalent irreducible V/(2)° = Up(g)-modules
satisfies the condition (3) of Hypothesis I. Therefore, we have a unique 2A-framed VOA
structure on

V(2) = @aes:V(2)"
with structure codes (D(0), S%) by Theorem [7.4.5. Following Theorem [7.4.9, define

UDh
Up(o

V= IndB V(2) = €D Ind

acSh

V@)*.

Then V¥ has a unique structure of a 2A-framed VOA with structure codes (D%, S%).

Theorem 7.5.3. ([M5]) The 2A-framed VOA V* with structure codes (D*, S%) is isomor-
phic to the moonshine VOA constructed by Frenkel-Lepowsky-Muerman [FLM] and the
full automorphism group Aut(V?) is the Monster finite sporadic simple group M.

Proof: This is the main theorem of [M5] and the proof is not easy. Here we give
a brief explanation. Let w = e! + --- 4+ ¢*® be the 2A-frame of V% Then we have
1 < i < 48} acting on V& One
can easily check that § = 7.7, is of order 2. It is shown in [M5] that the fixed point
subalgebra (V%) is isomorphic to the Zy-orbifold V" of the Leech lattice VOA V.
By our construction, it is not difficult to see that our V* has no weight one subspace.
Therefore, by the classification of irreducible V,'-modules, V# ~ Vf & (VI)*. Since the
structure of a Zy-graded extension V,~ & (V)" is unique over C, our moonshine VOA is
isomorphic to FLM’s moonshine VOA.

One can prove that V¥ is generated by its weight two subspace by considering codes
D% and S®. Then by the results of [C], [G] and [Ti], we can prove that Aut(V*) ~ M. For
a different proof, see [M5]. 1

mutually commutative 48 Miyamoto involutions {7,

Remark 7.5.4. It is shown in [C] [M1] that § = 7.17.2 belongs to the 2B-conjugacy class
of the Monster.



Chapter 8

Applications to the Moonshine VOA

8.1 2A-involution and the baby-monster SVOA

In this subsection we consider an application of the theory of simple current extensions
to the theory of Miyamoto involutions.

8.1.1 Commutant superalgebra associated to the Ising model

Let (V,Yv(+,2),1,w) be a simple VOA. Suppose that V' contains a conformal vector e
with central charge 1/2. We assume that the Virasoro sub VOA generated by e is simple
and we denote it by Vir(e).

Remark 8.1.1. Given a conformal vector e with central charge 1/2, we can determine
whether e generates a simple Virasoro VOA Ly;,(1/2,0) by checking whether the singular
vector

(64(e—1))* + 93(e(—2))* — 264e(_3)e(—1) — 108¢(—5)) 1

vanishes in V' or not (cf. [DMZ]).

Since Vir(e) is rational, we can decompose V into a direct sum of irreducible Vir(e)-

modules:

V= Vi(0) @ Va(1/2) @ Va(1/16),

where V,(h) is the sum of all irreducible Vir(e)-submodules isomorphic to L(1/2,h), h €
{0,1/2,1/16}. Recall the Miyamoto involutions 7, € Aut(V) and o, € Aut(V{’)). By
definition, 7, acts on V,(0) @ V.(1/2) as a scalar 1 and on V,(1/16) as a scalar —1, and o,
acts on V,(0) as a scalar 1 and on V,(1/2) as a scalar —1.

Define the space of highest weight vectors by T,(h) := {v € V | eqyv = hv} for h €
{0,1/2,1/16}. Then as vector spaces we have isomorphisms V,(h) ~ L(1/2,h) @ T.(h).
By the Miyamoto involution o, the subspace V,(0) @ V.(1/2) = L(1/2,0)®7T.(0) ®
L(1/2,1/2) ® T.(1/2) has a structure of a simple Zs-graded VOA. We also know that

113
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L(1/2,0)® L(1/2,1/2) is a simple SVOA. So it is likely to hold that the commutant sub-
algebra T,(0) affords a Zs-graded extension 7,(0) & T,(1/2). We prove that this is true.
First, we show that a decomposition w = e + (w — e) is orthogonal if V' is of CFT-type.

Lemma 8.1.2. If V is of CFT-type, then w = e+ (w —e) is an orthogonal decomposition.

Proof: We compute eyw)e.

emwee =weemne+ e, we)le
= w)e — [wa), ele
= 2w@)e — {(wee)e) + 2(wwe)e + (wee)mte

= 2w(2)e — (w(g)e)(l)e.

By the skew-symmetry, we have (w@je)qye = emwee — wo)ee)wee. Since egwee €
Vo = Cl, woyewze = 0 and so (wee)ae = emywee. Substituting this into the
equality above, we get ewpe = weye. Namely, wpe is an eigenvector for e(;) with
eigenvalue 1. Since V' is a module for Vir(e), there is no eigenvector with e(;)-weight 1.
Hence wzye = 0. Then the assertion follows from Lemma 3.8.4. 1

By this lemma, we will assume that V' is of CFT-type.

Proposition 8.1.3. (1) T,(0) = Keryey = Comy (Vir(e)) is a simple sub VOA with
the Virasoro vector w — e.

(2) T.(1/2) is an irreducible T,(0)-module.

(3) Vir(e) = Kery (w — e) (o) = Comy (7%.(0)).

Proof: (1): Let v € V. Since eyv = 0 implies eyv = 0, T.(0) = Keryeny =
Kerye(). So we only need to show that 7¢(0) is simple. Since V' is simple, the 7.-orbifold
Vel = V,(0) @ V,(1/2) is simple. Then the o.-orbifold (V{7)){7e) = V,(0) is also simple.
Since Vir(e) ® Te(0) 3 a®b — a(—1)b € V¢(0) is an isomorphism of VOAs, T.(0) is also
simple.

(2): Since both V() = V,(0) @ V,(1/2) and V,(0) are simple VOAs, V,(1/2) is an irre-
ducible V,(0)-module. So T.(1/2) is also irreducible.

(3): As w—e is a conformal vector, Kery (w—e)( is generally contained in Kery (w—e)q).
On the other hand, since V' is of CFT-type, Kery (w — €)1y = Vir(e). Then

Vir(e) € Comy (Comy (Vir(e))) = Kery (w — e)(o)

implies Vir(e) = Kery (w — €) (o). 1
Recall the construction of code VOAs in Section 7.3.1. We note that our construction

in Section 7.3.1 works in particular to define a tensor product of any two SVOAs.
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Theorem 8.1.4. Suppose that T.(1/2) # 0. Then there exists a simple SVOA structure
on T.(0) @ T.(1/2) such that the even part of a tensor product of SVOAs

{L(1/2,0) & L(1/2,1/2)} @{T(0) & T(1/2)}
is isomorphic to V.(0) & V.(1/2) as a VOA.

Proof: We shall define vertex operators on an abstract space T.(0) ©7.(1/2). First,
we show an existence of a T, (0)-intertwining operator of type 7.(1/2) x T.(1/2) — T.(0).
Write Yy (w, 2) = >, 7 L(n)z7" 2 and Yy (e,2) = Y, o7 L¢(n)z7""2 Since L(0) — L%(0)
semisimply acts on both T,(0) and T,(1/2), we can take bases {a” | v € T'} and {u* | X €
A} of T,(0) and T,(1/2), respectively, consisting of eigen vectors for L(0) — L(0). Let
my t Ve(0) — L(1/2,0)®a”, v € T', be a projection map. For v € I" and A\, € A, we
define a linear operator I}, (-, 2) of type L(1/2,1/2) x L(1/2,1/2) — L(1/2,0) ® a” by

L (r,2)y = 2 LOHLO) 1y (O -LO) g 40, 2) 2O =L Oy @
_ R Y (2 @, 2)y @ ut,

for z,y € L(1/2,1/2), where ||, |u| and |y| denote the (L(0) — L¢(0))-weight of u*, u*
and a”, respectively. Then by Proposition [3.8.9/ the operator I:\/u(-,z) is an L(1/2,0)-
intertwining operator of type L(1/2,1/2) x L(1/2,1/2) — L(1/2,0). Since the space
of intertwining operators of that type is one-dimensional, each ];\/u(" z) is proportional
to the vertex operator map Yy (-, z) on the SVOA M = L(1/2,0) @ L(1/2,1/2) which
we constructed explicitly in Section 7.1.2. Thus there exist scalars c}u € C such that
I3,(,2) = ¢, Yu(-,2). Then the vertex operator of z®@u* € L(1/2,1/2) ® T.(1/2) on
Ve(1/2) can be written as follows:

Yo(z@uh, 2)y@u = Yy(z,2)y® Y  cf,a”z= A=k,
vyel

Thus, by setting J(u?, 2)u* := Z c}uavzw‘_l’\l_‘“‘, we obtain a decomposition
vel’

YV('I ®U/\, Z)y ®uM - YM(:Ea Z)y ® ‘](U’A7 Z)uu

for @ ut, y@u' € L(1/2,1/2) @ V.(1/2). We claim that J(-,z) is a T.(0)-intertwining
operator of type T,(1/2) x T.(1/2) — T.(0). It is obvious that J(u, z)v contains finitely
many negative powers of z and the (w — e)q)-derivation property J((w — e)ou,z)v =
4 J(u,z)v hold for all u,v € T,(1/2). So we should show that J(-,z) satisfies both the
commutativity and the associativity. Let a € T.(0) and u,v € T.(1/2) be arbitrary
elements. Then the commutativity of vertex operators on V' leads to

(21 — 20)VYy (1®a, zl)YV(g/)_%]l ® u, z2)1/1_%]1® v
= (21— Zz)NYV(@D_%ﬂ@U,Zz)Yv(]1®a721)¢_%]l®U~
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for sufficiently large V. Rewriting the equality above we get

(21 — 22)NYM(1/)_%]1, zZ)I/J_%]I & YTE(O)(CL, 21>J(u, ZQ)U
= (2 — ZQ)NYM(@/J_%]I, 22)@/)_%]1 ® J(u, 22)Y1.(1/2)(@; 21)V,

where Y7, (0)(a, z) and Y7,(1/2)(-, 2) denote the vertex operator of a € T,(0) on 7.(0) and
T.(1/2), respectively. By comparing the coefficients of (1/1_%]1)(0)1/1_%]1 = 1, we get the

commutativity:

(z1 — zg)NYTe(o)(a, 21)J (u, 22)v = (21 — 20) J (u, 20)Y1.(1/2) (@, 21)v.

Similarly, by considering coefficients of Yy (Y (1® a, zo)¢_% 1®u, Zg)w_% I®wvin V, we
obtain the associativity:

(20 + 22) Y (0) (@, 20 + 22) T (u, 20)v = (20 + 20) ™ T (Y1 (12 (@, 20, 22)0.

Hence, J(+, z) is a T.(0)-intertwining operator of the desired type.
Using Yy (-, 2) and J(-, 2), we introduce a vertex operator map Y (-, z) on T.(0) &
T.(1/2). Let a,b € T.(0) and u,v € T,(1/2). We define

19Y (a,2)b:=Yy(1®a,2)10b, zb_%ﬂ@Y(a,z)u =Yy(1®a, 2)1/1_%]1®u,

~

@/J_%]l@)Y(u, 2)a = LD LY (1@ a, z)@b_%]l@)u, Y (u, z)v := J(u, 2)v.

Then all Y (-, z) are T, (0)-intertwining operators. We note that Y (-, z) satisfies the vacuum

condition:

~

Y(z,2)1 € x+ (T.(0) & T.(1/2)) [[2]]2

for any x € T,(0) & T.(1/2). Hence, to prove that T.(0) & T.(1/2) is a simple SVOA,
it is sufficient to show that the vertex operator map f/(, z) defined above satisfies the
commutativity. By our definition, the vertex operator map Yy(a®z,2) of a®@z €
L(1/2,h) ®Tu(h) = Vi(h), h = 0,1/2, can be written as Yy (a,2)®Y (z,2). Because
of our manifest construction of Yj,(+,z) in Section 7.1.2, we can perform explicit com-
putations of the vertex operator Yy (-, z) on L(1/2,0) & L(1/2,1/2). Therefore, by com-
paring the coefficients of vertex operators on V', we can prove that Y(, z) satisfies the
(super-)commutativity. Thus, by our definition, (7,(0) & T.(1/2),Y (-, z), 1,w — ) carries
a structure of a simple SVOA. The rest of the assertion is now clear. 1

Remark 8.1.5. There is another proof of Theorem 8.1.4/ in [H61]. In [H61], he assumed
the existence of a positive definite invariant bilinear form on a real form of V. However,

our argument does not need the assumption on the unitary form.
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Since 72 = 1 on V, the space V,(1/16) is an irreducible V{")-module. As a (V{7)){7e) =
Vir(e) ® T, (0)-module, V,(1/16) can be written as L(1/2,1/16) ® T.(1/16). It is not clear
that 7,(1/16) is irreducible under 7.(0). However, we can prove that it is irreducible
under T¢.(0) & T.(1/2).

Theorem 8.1.6. Suppose that V.(1/16) # 0. Then T.(1/16) carries a structure of an
irreducible Zo-twisted T.(0) & T.(1/2)-module. Moreover, V.(1/16) is isomorphic to a
tensor product of an irreducible Zy-twisted L(1/2,0) @ L(1/2,1/2)-module L(1/2,1/16)*"
and an irreducible Zo-twisted T,(0) & T.(1/2)-module T,(1/16).

Proof: The idea of the proof is the same as that of Theorem 8.1.4. Computing
vertex operators on L(1/2,1/16)" and then comparing the coefficients in V', we will
reach the assertion. Denote by Yy(:,2) the vertex operator map on the Z,-twisted
L(1/2,0) @ L(1/2,1/2)-module L(1/2,1/16)" as we constructed in Section 7.1.2. Let
a®be L(1/2,h)@T.(h) with h =0or 1/2 and z®y € L(1/2,1/16) ® T.(1/16). As we
did before, we can find T,(0)-intertwining operators Y7, yx1.(1/16)(-, 2) of types Te(h) X
T.(1/16) — T.(1/16) such that

Yi(a®b,2)r @y =Yy(a,2)z® YTe(h)XTe(l%)(b, 2)y. (8.1.1)

Define Y (b, z)y := Vi) (b, 2)y for b € Te(h), h = 0,1/2 and y € T.(1/16).
By direct computations, we can prove that the Zs-twisted Jacobi identity for Yy (-, 2)
together with the Jacobi identity for Yy (-, z) supplies the Z,-twisted Jacobi identity
for Y(-,z). Thus, (T.(1/16),Y(-,2)) is a Zo-twisted T,(0) & T.(1/2)-module. Since
Ve(1/16) = L(1/2,1/16) ® T.(1/16) is irreducible under V,(0) & V,(1/2), the irreducibility
of T.(1/16) is obvious. 1

8.1.2 Omne-point stabilizer

We keep the setup of previous subsection. Assume that V = V,(0) & V.(1/2) & V.(1/16)
with V,(h) # 0 for h = 0,1/2,1/16. Define the one-point stabilizer by Cauyv)(e) == {p €
Aut(V) | p(e) = e}. Then by 7, = prep™* for any p € Aut(V), we have Cayvy(e) C
Caw(v)(Te), where Caw(vy(7e) denotes the centralizer of an involution 7. € Aut(V).

Lemma 8.1.7. There are group homomorphisms 11 : Cauyvy(e) — Cayyvizo(e) and
Vo 1 Cayyvirery(e) — Aut(T.(0)) such that Ker(¢y) = (7.) and Ker(y) = (o).

Proof: Let p € Cawvy(e). Then p preserves the space of highest weight vectors
T.(h) where h € {0,1/2,1/16}. Then we can define the actions of p on the space
of highest weight vectors T.(h) and the eigenspaces V.(h) for h € {0,1/2,1/16}. In
particular, we have group homomorphisms 1 : Cauyvy(e) — Caygpireny(e) and 9y :
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Crut(vireny(e) — Aut(T.(0)) by a natural way. Assume that ¢1(p) = idy.) for p €
Cauvy(e). Since p € Cawv)(7e), p acts on V,(1/16) commutes with the action of
Vel = V,(0) @ Vo(1/2) on its module V,(1/2). Therefore, p is a scalar by Schur’s lemma
and hence p € (7.) C Cau(v)(7e). Similarly, if o1 (p') = idr, (o) for p' € Cipyyime)(€), then
P € (0e) C Cayyvireny (). !
Below we will work over the following setup.
Hypothesis II
V' is a simple holomorphic Cs-cofinite VOA of CFT type such that

(1) V contains a conformal vector e which generates a simple Virasoro VOA Vir(e) =~
L(1/2,0).

(2) V has a decomposition V,(0) & V.(1/2) & V.(1/16) such that V.(h) # 0 for h €
{0,1/2,1/16}.

(3) T.(0) is a simple rational Cs-cofinite VOA of CFT-type.

(4) V,(1/16) is a simple current V{™)-module and T,(1/2) is a simple current T, (0)-module.

Theorem 8.1.8. Under Hypothesis II, V™) has exactly four inequivalent irreducible
modules V<) V,(1/16), W° := L(1/2,0)®T,(1/2) ® L(1/2,1/2) @ T.(0) and W' :=
V.(1/16) Ry, -y WPO.

Proof: Note that V,(0) = Vir(e) ® T.(0) and V™) are simple rational Cs-cofinite
VOAs of CFT-type under Hypothesis II. Therefore, we can apply a theory of fusion
products here. Since V = V{7 @ V,(1/16) is a Zy-graded simple current extension of
Vi) every irreducible V{)-module is lifted to be either an irreducible V-module or
an irreducible 7.-twisted V-module. Moreover, the 7.-twisted V-module is unique up to
isomorphism by Theorem 10.3 of [DLM2]. Consider a V,(0)-module L(1/2,1/2) ® T.(0).
Since T,(1/2) is a simple current 7, (0)-module, the space

W =1L(1/2,1/2)®T.(0) ® L(1/2,0) ® T.(1/2)

has a unique structure of an irreducible V{)-module by Theorem 4.5.3. Then the induced
module
W=weWw!', W'=V.(1/16) Ry ., W°,

becomes an irreducible 7.-twisted V-module again by Theorem 4.5.3. Therefore, V{7
has exactly four irreducible modules as in the assertion. Finally we remark that V(7
V.(1/16) and W' have integral top weights and W has a top weight in 1/2 + N. 1

By the fusion rules (7.2.1), we note that W' as a Vir(e) is a direct sum of copies of
L(1/2,1/16). Set the space of highest weight vectors of W! by Q.(1/16) := {v € W' |
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L¢(0)v = (1/16) - v}. Then as a Vir(e) ® T.(0)-module, W' ~ L(1/2,1/16) ® Q.(1/16).
In this case, we can also verify that the space Q.(1/16) naturally carries an irreducible
Zo-twisted T,(0) & T,(1/2)-module structure such that W' ~ L(1/2,1/16)" ® Q.(1/16)
as a (L(1/2,0) @ L(1/2,1/2)) ® (T.(0) & T.(1/2))-module.

Proposition 8.1.9. If the Zy-twisted T,(0) @ T.(1/2)-module T.(1/16) is irreducible as
a T.(0)-module, then its Zo-conjugate is isomorphic to Q.(1/16) as a Zs-twisted T,(0) &
T.(1/2)-module. In this case there are three irreducible T,(0)-modules, T.(0), T.(1/2) and
T.(1/16). Conversely, if T.(1/16) as a T.(0)-module is not irreducible, then so is Q.(1/16)

and in this case there are siz inequivalent irreducible T,(0)-modules.

Proof: Assume that 7,(1/16) is irreducible as a T,(0)-module. Then its Zy-conjugate
is not isomorphic to T,(1/16) as a Zs-twisted T,.(0) & 7T.(1/2)-module. We denote the Zo-
conjugate of T.(1/16) by T.(1/16)~. It is not difficult to generalize Theorem 4.5.2 to
include the case of SVOA by a similar argument (see Appendix). Then we see that every
irreducible T, (0)-module is lifted to be either an irreducible T,(0) & T,(1/2)-module or an
irreducible Zo-twisted T,.(0) & T.(1/2)-module. Then by the classification of irreducible
V{re)-modules in Theorem [8.1.8, we see that any irreducible Zy-twisted T,.(0) ® T,(1/2)-
module is isomorphic to one and only one of T,(1/16) and T,(1/16) = Q.(1/16).

Conversely, if T,(1/16) is not irreducible, then it is a direct sum of inequivalent two
irreducible T¢(0)-module as 7.(1/2) is a simple current 7¢(0)-module. Then Q.(1/16) is
also a direct sum of two inequivalent irreducible 7,(0)-modules and @Q.(1/16) % T.(1/16)
as T.(0)-modules because of the classification of irreducible V (")-modules. 1

Corollary 8.1.10. If T,(1/16) is irreducible as a T,(0)-module, then Vi< @& W' is a
Zo-graded simple current extension of V<) which is equivalent to V = V) @ V,(1/16).

Proof: If T7,(1/16) is an irreducible 7,(0)-module, then by the previous proposi-
tion the Zy-conjugate V.(0) @ V.(1/2)-module of V.(1/16) = L(1/2,1/16) ® T.(1/16) is
isomorphic to W' = L(1/2,1/16) ® Q.(1/16). Then as the Zy-conjugate extension of
Vel = V,(0) @ Vo(1/2), V{7 @ W1 has a structure of a Zy-graded extension. 1

Remark 8.1.11. The above corollary implies that the Zo-twisted orbifold construction
applied to V' in the case of Zy = (7.) yields again V' itself.

Theorem 8.1.12. Under the Hypothesis 11,

(i) o is surjective, that is, Cyyywery(€) = (0¢). Aut(T(0)).

(1) Aut(T.(0) @ T.(1/2)) = 2.(Cpuyvimery(€)/(0e)), where 2 denotes the canonical Zs-
symmetry on the SVOA T.(0) & T.(1/2).

(iii) |Caueveoy(€) : Caurvy(e)/(Te)] < 2.

(iv) If Cawvy(e)/(Te) is simple or has an odd order, then the extensions in (i) and (ii)
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split.  That is, Cayyyizeny(€) = (0e) X Cawvy(e)/(7e) and Aut(T.(0) © To(1/2)) ~ 2 x
Aut(7.(0)).

Proof: Since we have an injection from Cly v we)y(€)/{0e) to Aut(7(0)) by Lemma
8.1.7, we show that every element in Aut(7,(0)) lifts to be an element in Cy e (€).
By Proposition 8.1.9, every irreducible T.(0)-module appears in the one of T,.(0), T.(1/2),
T.(1/16) or Q.(1/16) as a submodule. In particular, we find that 7,(0) is the only ir-
reducible T,(0)-module whose top weight is integral and T,.(1/2) is the only irreducible
T.(0)-module whose top weight is in 1/2 + N. Let p € Aut(7.(0)). Then by considering
top weights we can immediately see that T,(0)” ~ T,(0) and 7T,(1/2)? ~ T,(1/2). Then
by Theorem 4.2.9 we have a lifting p € Aut(7.(0) @ T.(1/2)) such that p7.(0) = T.(0),
pT.(1/2) = T.(1/2) and p|7,(0) = p. Since this lifting is unique up to a multiple of the
canonical Zy-symmetry on T.(0) ®T,.(1/2), we have Aut(7.(0) & T (1/2)) ~ 2. Aut(7,(0)).
Now consider the canonical extension of j to Cy ey (€). We define p € Cpypirery(€)
by

plrajem e =1dam ®p
for h = 0,1/2. Then by this lifting C (v (-))(e) contains a subgroup which is isomorphic
to 2.Aut(7.(0)). Moreover, the canonical Zy-symmetry on 7,(0) & 7.(1/2) is naturally
extended to o, € Ciyyyrery(€). Clearly ¥h(p p) = p and so0 1, is surjective. Hence we have
the desired isomorphisms Cy v -e))(€) = (o). Aut(7T.(0)) and Aut(T.(0) ® Te(1/2)) ~
2.(Caug(virery(e)/{oe)). This completes the proof of (i) and (ii).

Consider (iii). By Theorem [8.1.8, there are exactly three irreducible V{)-modules
whose top weights are integral, namely, V(™) V,(1/16) and W'. Since Caut(v ey (€) acts
on the 2-point set {V,(1/16), W'} as a permutation, there is a subgroup H of Cy v tre)(€)
of index at most 2 such that V,(1/16)™ ~ V,(1/16) as a V{™)-module for all 7 € H. Then
there is a lifting 7 € Cauevy(e) of 7 such that ¢, (7) = 7 for each # € H by Theorem
4.2.9. Thus [Cyypvimeny(€) : Caugvy(e)/{Te)| < 2 and (iii) holds.

Consider (iv). Suppose that Cauvy(€e)/(7e) is simple or has an odd order. We know
that Cy (v i) (€) contains a subgroup isomorphic to Cawvy(e)/(7) with index at most 2
by (iii). However, since Cy (v (=))(€) contains a normal subgroup (o) of order 2, the index
|Caut(vireny(€) 1 Cauvy(e)/(7e)| must be 2 and hence we obtain the desired isomorphism
Cruv oy (€) = (oe) X Caugvy(e)/(7e). In this case it is easy to see that the extension
Aut(T.(0) @ To(1/2)) = 2.Aut(7,(0)) splits. 1

Corollary 8.1.13. If Cawvy(e)/(Te) is simple or has an odd order, then V.(1/16) is an
irreducible V,(0)-module and T,(1/16) is an irreducible T,(0)-module. Therefore, V{7 @
W1 forms the o.-conjugate extension of V = V) @ V,(1/16) and is isomorphic to V.
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Proof: Let H be the subgroup of Cy (=) (e) which fixes V,(1/16) in the action on
the 2-point set {V,(1/16), W'}. It is shown in in the proof of (iii) of Theorem 8.1.12/ that

we have inclusions

H C Cauvy(€)/(Te) C Cpugvirey(€) = (0e) X Cauvy(€)/(Te)-

Therefore, 0. ¢ H and hence o, permutes V.(1/16) and W?'. Then V,(1/16) is an irre-
ducible V(0)-module by Proposition 8.1.9/and hence T,(1/16) as a T.(0) as a T.(0)-module
is irreducible. The rest of the assertion is now clear. 1

Remark 8.1.14. The assertion (iii) of Theorem 8.1.12/is already established in [M11]. Also,
we should note that the idea of the above proof is already developed in [Sh].

8.1.3 Superalgebras associated to 2A-framed VOA

Let V' be a 2A-framed VOA with structure codes (D, .S). We assume that the pair (D, 5)
satisfies the condition (1-ii) of Hypothesis I and D = S*. Then V is a holomorphic VOA
by Theorem 7.4.2. Let w = e!+---+¢" be the 2A-frame of V. We consider the commutant

subalgebra for Vir(e!). For simplicity, set e = e!. Then we have a decomposition
V =V.0)® V.(1/2) ® V.(1/16).

Here we also assume that {1} NSupp(S) # 0, that is, V.(1/16) # 0. Then by the condition
(1-ii) of Hypothesis I we have V.(1/2) # 0. Let V = @®,esV* be the decomposition
according to the structure codes (D, S). Then V? is isomorphic to the code VOA Up
associated to the even linear code D and Vp is an S-graded simple current extension
of V? by Lemma 7.4.3. Set S° = {a € S | {1} N Supp(a) = 0} and S* = {a € S |
{1} N Supp(a) = {1}}. Then S = SY U S! (disjoint union) and we have a Zy-grading

V= (@aesova) D (@ﬂesl Vﬁ)

with V,(0) @ V.(1/2) = @aes0V* and V.(1/16) = @ges1 V7. Since Ve, o € S, are simple
current V%-modules, V,(1/16) is a simple current V(™ = V,(0) & V,(1/2)-module.

Write V.(h) = L(1/2,h)®T.(h) for h = 0,1/2,1/16 as we did before. Then by
Theorem 8.1.4, we know that 7.(0) & T.(1/2) is a simple SVOA. The Virasoro vector of
T.(0) is given by w —e! = e?+---+¢€" and so T,.(0) is a 2A-framed VOA. We compute the
structure codes of T.(0). Define ¢, : (Z/2Z)"~' — (Z/2Z)" by (Z/2Z)" ' 5 a — (¢, a) €
(Z)27)" for e =0, 1, and set

D = f{a € (2/2Z)" | 6u) € DY, e=0,1, §°°:= {5 € (Z/2Z)" " | 6o(B) € ).

Proposition 8.1.15. The structure codes of T.(0) with respect to the 2A-frame e*+- - -+¢e"
are (D°, S%9).
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Proof: For a € 5%, define V¢ to be the sum of all irreducible ®!_; Vir(e’)-modules
whose Vir(e!)-components are isomorphic to L(1/2,¢/2) for e = 0,1. Then V,(1/2) # 0
implies that V¢ #£ 0 for all @ € S° and € = 0,1. Therefore, V* = V0 @ V! and
we obtain the 1/16-word decompositions V,(0) = Paeg0V*? and V.(1/2) = Bgpeg0V L.
Since D = ¢o(D%) U ¢y (DY), VOO ~ [(1/2,0)®@ Upo. Thus T.(0) has the 1/16-word
decomposition T,(0) = @ueg007.(0)* such that 7(7.(0)%) = o and T,(0)° ~ Upo. Hence
the structure codes of T,(0) are (D, S%Y). 1

Remark 8.1.16. By the proof above, we find that 7.(1/2) also has the 1/16-word decom-
position T,(1/2) = @aeg00T,(1/2)* such that 7(T,(1/2)*) = a. In particular, T,(1/2)" is
isomorphic to a coset module Up:.

The following is easy to see:
Lemma 8.1.17. The structure codes (D°, S%%) satisfy the condition (1) of Hypothesis I.

Thus 7,(0) is an S%-graded simple current extension of 7.(0)® = Upo by Lemma 7.4.3|
Thanks to Theorem [7.4.5, we can construct 7,(0) as a 2A-framed VOA without reference
to V.

Proposition 8.1.18. T,(1/2) is a simple current T,(0)-module.

Proof: By Remark 8.1.16, 7.(1/2) is isomorphic to the induced module Indg‘ig)[f D1
given by Theorem 4.5.2. Therefore, we have the fusion rule

T(1/2) B (o) To(1/2) = Indgf O (Ups Ry, Ups) = Ind (7 Upo = T,(0)

by Theorem 4.4.9. Thus 7.(0) is a simple current 7, (0)-module by Lemma 4.1.2. 1

Summarizing, we obtain:

Proposition 8.1.19. Let V be a 2A-framed VOA with structure codes (D, S) and a 2A-
frame w = e' + -+ + €". Suppose that the pair (D,S) satisfies the condition (1-ii) of
Hypothesis I and V,1(1/16) # 0. Then V and e* satisfy Hypothesis I1.

8.1.4 The baby-monster SVOA

Now consider the moonshine VOA V*# which we have constructed as a 2A-framed VOA in
Section 7.5.2. It has a 2A-frame w® = e! + - - - + ¢*® whose associated structure codes are
(D%, S%) as in Section 7.5.2. By Proposition 8.1.19, the pair (V¥ e!) satisfies Hypothesis
I1. In the following we consider the commutant superalgebra associated to V.

The full automorphism group of V¥ known to be the Monster M. For a conformal
vector e € V¥ with central charge 1/2, it is shown in [C] [M1] that the Miyamoto involution
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7. belongs to the 2A-conjugacy class of the Monster and that the correspondence e ~ 7,
is one-to-one. In particular, all conformal vectors of V% with central charge 1/2 are
conjugate under the Monster. The centralizer Cyy(7.) of a 2A-involution 7. is the 2-fold
central extension (7.) - B of the baby monster finite sporadic simple group B [ATLAS].
So B acts on the 7.-invariants of V* as an automorphism group of a VOA. Motivated by
this fact, G. Hohn studied the 7.-invariants of V# and found the baby-monster SVOA VB
on which B acts as an automorphism group in [H61]. In this article we present a slight

different approach. Consider the decomposition of V* as an Vir(e!)-module:
Vi=L(1/2,0)2T%(0) @ L(1/2,1/2) @ T% (1/2) ® L(1/2,1/16) @ T*, (1/16).

Then by Theorem 8.1.4/ we obtain a simple SVOA T ehl 0)eT ehl (1/2) and its irreducible Zo-
twisted module T7% (1/16). Following Hohn [HG1], we set VB := T%(0), VB' := T%(1/2)
and VB = VB @ VB!, and we call it the baby-monster SVOA*. We also set VBp =
le(l /16) which is an irreducible Zo-twisted VB-module. Since all the conformal vectors
of V¥ with central charge 1/2 are conjugate under M, the algebraic structures of VB and
VBr are independent of the choice of a conformal vector e!. Now by applying Theorem
8.1.12 to V% and e!, we have the following theorem (cf. [H51] [H62]):

Theorem 8.1.20. (1) The SVOA VB obtained from V* by cutting off the Ising model is
a simple SVOA.

(2) The piece VBr obtained from V¥ is an irreducible Zy-twisted VB-module.

(3) Aut(VBY) ~ B and Aut(VB) ~ 2 x B.

(4) VBr as a VB°-module is irreducible. Thus, there are ezactly three irreducible VB°-
modules, VB?, VB! and VBr.

(5) The fusion rules for irreducible VB®-modules are as follows:
VleVB1:VB0, ‘/le‘/BT:VBT, VBTXVBT:VBO—i-VBl.

Proof: The assertion (1) follows from Theorem 8.1.4/ and (2) follows from Theo-
rem 8.1.6. So consider (3). For simplicity, below we write e for e!. By (i) of Theo-
rem 8.1.12, we have Cy (v () = (oe) x Aut(VBY). On the other hand, we have
|Cant((veyreny(€) : Caugvey(€)/(Te)| < 2 by (ili) of Theorem 8.1.12. Since the correspon-
dence e ~ 7, is one-to-one by [C] and [M1], Caypvay(€) = Caupevay (Te) = On(7e) = (7e) - B.
Therefore, C'y vy (€) contains B with index at most 2. If Cyy((y5yrery(€) = B, then
the simple group B contains a normal subgroup (o) of order 2, which is a contradiction. It
is easy to see that B and o, commute. Thus Cy vy (€) = (0e) x B and Aut(VB") ~ B.
This completes the proof of (3).

*He also call it the shorter moonshine module i n [H62].
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Consider (4). Since Cpyq(vayirey(€)/(Caurvey(€)/(Te)) = (o) is of order 2, the involu-
tion o, permutes V(1/16) and W', where W1 is as in Theorem 8.1.8, by the proof of (iii)
of Theorem [8.1.12. Then V#(1/16) and W' as V}(0)-modules are isomorphic. So VBr is
irreducible as a VB’-module by Proposition 8.1.9. Therefore, the irreducible VB°-modules
are given by VB°, VB! and VB7 again by Proposition 8.1.9. This completes the proof of
(4).

Finally, consider (5). We only have to show the fusion rule VBr x VBy = VB + VB!
By considering the 1/16-word of VBr, the fusion product VBr x VBrp is contained in
NVB? @& NVB! in the fusion algebra for VBY. Write VBr x VBr = noVB® + n, VB! with
no,n1 € N. Then the simplicity of V¥ implies ng # 0 and n; # 0. And by applying VB! to
VBr x VBr, we see that ng = ny. At last, since the dual module of VB is isomorphic to
VB, the space of VB -intertwining operator of type VBr x VBy — VB is one-dimensional.
Thus ng = n; = 1 as desired. 1

Remark 8.1.21. The assertion (3) of Theorem 8.1.20) is already established in [H62]. In
[H62], Hohn used many results from the finite group theory. On the other hand, our
proof is mainly based on the structure theory of the moonshine VOA and we only use

that Cy(7e)/(7e) is a simple group.

The classification of irreducible VB®-modules has many corollaries.

Corollary 8.1.22. The irreducible 2A-twisted V%-module has a shape
L(1/2,1/2) @ VB° @ L(1/2,0) @ VB' @ L(1/2,1/16) @ VBr.

Proof: Follows from Theorem 8.1.20, Theorem 8.1.8 and Proposition 8.1.9. 1
Remark 8.1.23. A straightforward construction of the 2A-twisted (and 2B-twisted) V*-

module is given by Lam [L.2]. In his construction, it is given as Ups,., Xy, V' with

v = (10) € (2/2Z)*.

Corollary 8.1.24. For any conformal vector e € V7 with central charge 1/2, there is no
automorphism p on V¥ such that p(Vi(h)) = Vi(h) for h=0,1/2 and p|ysme = oe.

Proof: Suppose such an automorphism p exists. We remark that p also preserves the
space V,(1/16) as p € Cauwyv)(e). We view VE(1/16) as a (V#){)-module by a restriction
of the vertex operator map Yi:(-,2) on V% Consider the o.-conjugate (V?){")-module
V%(1/16)%¢. By Theorem 8.1.20/ and Proposition 8.1.9, V*(1/16)° is not isomorphic to
VE(1/16) as a (V#))-module. On the other hand, we can take a canonical linear iso-
morphism ¢ : V#(1/16) — V*(1/16)% such that Y1160 (@5 2) v = @Yyu(oea, 2)v for all
a € (VB and v € V#(1/16) by definition of the conjugate module. Then we have
Yy 16y (@, 2)0pv = @Yyu(oca, 2)pv = @Yy (pa, 2) pv = pYys(a, 2)v

e
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for any a € (V%) and v € V£(1/16). Thus ¢p defines a (V?){™)-isomorphism between
VE(1/16) and VA(1/16)%, which is a contradiction. '

Corollary 8.1.25. The 2A-twisted orbifold construction applied to V® yields V' itself
again.
Proof: Follows from Theorem 8.1.20/ and Corollary [8.1.13. 1

Remark 8.1.26. The statement in the corollary above was conjectured by Tuite [Tu]. In
[Tu], Tuite has shown that any Z,-orbifold construction of V¥ yields the moonshine VOA
V% or the Leech lattice VOA Vj under the uniqueness conjecture of the moonshine VOA
which states that V' constructed by Frenkel et. al. [FLM] is the unique holomorphic VOA

with central charge 24 whose weight one subspace is trivial.

Finally, we end this subsection by presenting the modular transformations of characters
of VB®-modules. Here the character means the conformal character, not the ¢-dimension,
of modules. Recall the characters of L(1/2,0)-modules. By our explicit construction in
Section [7.1.1], one can easily prove the following (cf. [FFR] [FRW]):

chrya0)(7) = (1/2) - g~ V18 {120 (14 ¢™+1/2) + T2 (1 — ¢ 1/2)}
chrgiyo/o)(T) = (1/2) - ¢ V{1 (1+ ¢"2) — T2, (1 — ¢™H/2) }

chroaie)(T) = ¢ VAT, (1 + ¢™).

The following modular transformations are well-known:

1 1 1
h —1 — Zch —ch —ch
chriy20(=1/7) 5¢ £a/2,0)(7) + 5C ra/21/2)(7) + ok £/2,1/16)(7),
hoamn(—1/m) = =chpumn(r) + schym(r) — —=ch (r)
Clr(1/2,1/2) T = 2(3 L(1/2,00\T 2C L(1/2,1/2)\T \/§C L(1/2,1/16)\T ),

1 1
chrasoi16(=1/7) = EChL(l/ZO)(T) - EChL(l/Q,l/Q)(T)'

Set J(7) := j(7)—T44 = ¢~ 4+0+196884¢+- - - , where j(7) is the famous SLy(Z)-invariant
j-function. Since chy+(7) = J(7) and

chy: (1) = chri/2,0)(7)chypo (7) + chriy2,1/2)(7)chvp (T) + chry2,1/16)(7)chvs, (T),

we can write down the characters of irreducible VB%-modules by using those of V! and
L(1/2,0)-modules. This computation is already done in [Mat] by using Norton’s trace
formula. The results are written as a rational expression involving the functions J(7),
chrajon(7), h =0,1/2,1/16, their first and second derivatives and the Eisenstein series
Es(7) and E4(7), see [Mat].
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By Zhu’s theorem [Z], the linear space spanned by {chygo(7),chyp:(7),chyp,.(7)} af-
fords an SLy(Z)-action. By using the modular transformations for J(7) and chyq /o) (7),
h =0,1/2,1/16, we can show the following modular transformations:

chypo(—1/7) = %ChVB()(T) + %ChVBI(T) + %chVBT (1),
chypi(—1/7) = %ChVBO(T) + %ChvBl(T) — %ChVBT (1),
chyp, (—=1/7) = %ChVBO (1) — %ChVBl(T).

Namely, we have exactly the same modular transformation laws for the Ising model
L(1/2,0). As in Theorem [8.1.20, we also note that the fusion algebra for VB? is also
canonically isomorphic to that of L(1/2,0). Therefore, we may say that L(1/2,0) and
VBY form a dual-pair in the moonshine VOA V&,

8.2 3A-algebra for the Monster

In this section we study an example of VOA which has a close connection to the 2A-
involution and the 3A-triality of the Monster. The study of this algebra was first begun by
Miyamoto [M8] and in [SY] Sakuma and the author made a great development. Moreover,
the research in this direction has been recently comes to be more significant in the study
of 2A-involution of the Monster and the results in this section are greatly generalized in
[LYY].

8.2.1 Construction

Let A} = Za' ® Za? & - - & Za® with (o, af) = 24;; and set L := A} U (y + A}) with
v = 1a' + 3a® + 20® + o', Then L is an even lattice so that we can construct a
VOA Vj, associated to L. We have an isomorphism Vi, = Vs © V., 45 =~ {Lg(1,0)%* @
Ly(1,1)94} @ Ly(1,0), where Ly(¢,j) denotes the integrable module for the affine VOA
Lg(£,0) associated to sly(C) (cf. Section 2.6.3). By (5.4.3) and the fusion rules (3.7.3)
and (5.4.2), we can show the following.

Lemma 8.2.1. We have the following inclusions
Ly(1,0)9% D L(%,O)@L(
Lg(1,1)®3 > L(3,0)® L(

0) ® Lg(3,0),
0) ® Ly(3,3)

e
10°
e
10
Therefore, Vi, contains a sub VOA isomorphic to

Lg(3,0) @ Lg(1,0) @ Lg(1,0) @ Lg(3,3) @ Lg(1,1) ® Ly(1,0).
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Lemma 8.2.2. We have the following decompositions:
Ly(3,0) ® Lg(1,0) ® Lg(1,0)
~{L(3,0)® L(7,0) ® L(5,3) © L(%,5) & L(3, 3) ® L(
S{L(50)®L(5,3) @ L(5:3) 0 L(5, %) © L(5, 3
S{L(2,00®L(E, Z2) L(£,3)0L(E 1)@ L2, 2)® L(

RN [}

Iz 2= <

~— -

—~— ®

®

S

= &

~ o

M S~—
S~—

EN[=NEEN f T
o]
[l (=2

Lg(3,3) @ Ly(1,

—
—_
— ~—
~o ®
CNS
—~
[a—
@)
~—

7
o{L(£,00® L(¢,2) L(%:2) @ L(5,3) © L3, 37)} ® L4 (5, 2)
S{L(5 0@ L2, 1) @ L(5,3)® L(§, 2) @ L(5, ) @ L(3, 31)} ® Ly (5, 4)
L

Hence, L4(3,0)® Lg(1,0)®@ Lg(1,0) & Lg(3,3) ® Lyg(1,1) ® Lg(1,0) (and Vi) contains a

sub VOA U isomorphic to

L(3,0)® L(2,0) L(3,0)® L(2,5)
® P

L(33)0L(E5) | @ | L(E,3)®@L(E,0) | . (8.2.1)
® P

L(3,5) ®L(3,3) L(3,5) ®L($,3)

We can also define U in the following way. For ¢ =1,2,...,5, set

FJ = e ¢ + ... _|_e—aj’

. 1 . ) .

Wo=—— (ZH Hit g
2 +2) (2 (-7 By

VR P S
wh =0 —|—1<a(ﬂ)> 1— Qi

Fi+ F{DEJ) ,

Then H’,EV and FY generate a simple affine sub VOA L,(4,0) and o', 1 < i < 4,
generate simple Virasoro sub VOAs L(¢;,0) in V7. Furthermore, we have an orthogonal

decomposition of the Virasoro vector wy, of V into a sum of mutually commutative

Virasoro vectors as
wy, = w' + w4+ +wt + 05

Then we may define U to be as follows:

U={veV|wyv=uwhv=yv=0}
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Set
1 1
e = 1_6 ((054 _ 015)(,1))2 ]1 _ Z(ea‘lfcﬁ —I— €7a4+a5)’
5 7 16
W o= =W+ —wt — e,
18 9 9
vl = (9F — 8FP)(_y)(4F3 — 3F%) g ez(e’ to®+a’tal) (8.2.2)

1
~Lomt — sy Y

> 4 (4F3 — 3F1) g edle’ tatta+at)

1 2 1 2
—5 (9B = 8E%) -y (F <40>) (4F3 — 3FY)gez(@!te’+a’+al)

Then we can show that both e and v* are contained in U, and eqye = 2e, e@e = %1]1,
wg’l)vi = %vi and w?l)vi = %vi for i = 0,1. Therefore, e generates a sub VOA isomorphic
to L(3,0) in U and v, ¢ = 0,1, are highest weight vectors for Vir(w?)® Vir(w?) ~
L(2,0)® L(£,0) with highest weight (2,4). Since the weight 2 subspace of U is 4-
dimensional, we note that w? w?* v° and v! span U,. In the next subsection we will

show that they generate U as a VOA.

8.2.2 Structures

By Lemma 8.2.2) we know that there exists a structure of a VOA in (8.2.1). Here we will
prove that there exists a unique VOA structure on it. By (8.2.1), U contains a tensor
product of two extensions of the unitary Virasoro VOAs W(0) = L(3,0) & L(%,3) and
N(0) = L(£,0) ® L(£,5) (see Section 5.4). Since both W(0) and N(0) are rational, U is
completely reducible as a W (0) ® N(0)-module. Therefore, U as a W(0) ® N(0)-module
is isomorphic to

U~ W(0)®N(©0) & W (g)q@]\f (%)5 oW @)Q@N (%)f

where €;,&; = . Recall that both W (0) and N(0) have the canonical involutions oy and
09, respectively. Then they can be lifted to involutions of W (0) ® N(0) and we still denote
them by o, and o4, respectively. By our construction, U has a Zs-grading U = UT @ U~
with

U™ C Lg(3,0) ® Lg(1,0) ® Lyg(1,0) C Vs and

U™ C Lg(3,3) @ Lg(1,1) ® Lg(1,0) C Vg5
We note that the decomposition above defines a natural extension of an involution o705 on
W(0) ® N(0) to that on U, which we will also denote by y05. Therefore, by Lemma 4.2.8|
we have (W(3)" @ N(5)*)7% = W(2)? @ N(3)® and hence e, = —¢; and & = —&.
Since we may rename the signs of the irreducible N(0)-modules of £-type (cf. Remark

(8.2.3)

5.4.5)), we may assume that €; = ;.
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Theorem 8.2.3. A VOA U contains a sub VOA W(0)® N(0). As a W(0)® N(0)-

module, U is isomorphic to

2\ 4\ 2\~ 4\~
W(O0)® N(0)s W 3 QN 3 oW 3 ® N 3 (8.2.4)
after fizing suitable choice of £-type of N(%)i. Therefore, U is a simple VOA and gen-
erated by its weight 2 subspace as a VOA.

Proof: The decomposition is already shown. Since U is a sub VOA of V;, we have
Y(x,2)y # 0 for all z,y € U. Then by fusion rules for W (0) ® N(0)-modules, U is a
Zs-simple current extension of W (0) ® N(0). Therefore, U is a simple VOA. So we should
show that U, generates U. Since U, contains the Virasoro vectors w® and w* and highest
weight vectors of W (3)*® N(3)*, Us generates whole of W(2)*® N(35)*. Since V is
simple, for any non-zero vectors u € W(2)* @ N(3)* and v € W(3)~ @ N(5)~ we have
Y (u,z)v # 0in U (cf. [DL]). Therefore, by the fusion rules in Theorem [5.4.6/and Theorem
5.4.8, W(2)* ® N(3)* generate W (0) ® N(0) in U. Hence, U, generates whole of U.

By Lemma 4.2.7, we note that there exists the following Zs-simple current extension
of W(0)® N(0).

U =W(0)@N(0) & W (§)+®N (g)_ oW (g)_ ®N (§)+. (8.2.5)

Since U and U’ are oi-conjugate extensions of each others, they are equivalent Z3-

simple current extensions of W (0) ® N(0). Thus, we get the following.

Theorem 8.2.4. The following Zs-simple current extensions of W(0) ® N(0) are equiv-

W(0)® N(0) & W (§)+®N (g)i@w <§)®N (gf

Hence, there is a unique Zs-graded VOA structure in (8.2.1).

alent:

8.2.3 Modules

Let U be the Zs-graded VOA as in (8.2.1)). In this subsection we will classify all irreducible
U-modules. Set U = U° @ U' @ U? with U = W(0)® N(0), U' = W(3)"®@ N(3)" and
U>=W(3) @N(3)"

Lemma 8.2.5. FEvery irreducible U-modules is Zs3-stable.

Proof: Let M be an irreducible U-module. Take an irreducible U%submodule P of
M. By Lemma 4.4.1, both U' - P and U? - P are non-zero irreducible U°-submodules of
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M. Tt follows from the fusion rules for U° = W (0) ® N(0)-modules that U*- P £ U’ - P
as U%modules if i  j mod 3. Therefore, M = P® (U'- P)& (U*- P) and hence M has
a Zsz-grading under the action of U. This completes the proof. 1

By this lemma, the structure of an irreducible U-module is completely determined by

its U%-module structure.

Theorem 8.2.6. An irreducible U-module is isomorphic to one of the following:

W)@ N(©O) & W(E e NG e W(E) aN({),
W) e NG @WE) o NG e WE) e NG
W) e N@)eWE) e NG e WE) e NG
W) eN(0) & W(E) e N e W) eN({),
W) eNd) e W (L) T o N e W(L)- o N,
WER@NE) @ WO NG W) @ NG

Proof: By Theorem 4.5.2, every irreducible U%-module is uniquely lifted to either an
irreducible U-module or an irreducible Zs-twisted U-module according to its top weight.

Thus the assertion follows. ]

8.2.4 Conformal vectors

In this subsection we study the Griess algebra of U. Recall e, vy, v; € Uy defined by

(8.2.2). Set
105

w=w?+wl a:= ?(w—e),
32
b= ﬁ(—5w3 + Twt —4e),  c:= ko',

where the scalar k € R is determined by the condition (c,c) = 3%/2'". Then {e,a,b,c}
is a set of basis of U,. By direct calculations one can show that the multiplications and

inner products in the Griess algebra of U are given as follows:

1 1
ema =0, emb = 5”’ W= 169
105 32.5-7 31-105
aya = 7% amb = 5 b, a@yc= TC’
37 33 32.23 3° 31 23
b(l)b = ﬁe + ?aa b(l)c = 910 ¢, c)C = ﬁe + ga + gb,
3¢.5-7 37 35
<CL, Cl) = T, <b, b> = ﬁ, <C, C> = ﬁ
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Hence, we note that the Griess algebra of our VOA U is isomorphic to that of VA(e, f)
with (e, f) = 13/2!% in [M8]. Therefore, by tracing calculations in [M8] we can find the
following conformal vectors with central charge 1/2 in Us.

13 ~ 13
f=—=e+a+b+c, f:=—et+a+b—oc

28 28
And by a calculation we get
105 9 7 ~ 105 9 7 9 -
6(1).]8:—Fu)+§6+ f+_5f, 6(1).]0:—?0()"‘%6‘{“?][4‘?]0,
5 105 7 ~ 13
fof = —Zgw+ gge + 5 f+ 5f, (e.f)={e.f)=(f,[) = 10"

Using these equalities, we can show that the Griess algebra U, is generated by two con-
formal vectors e and f. Since U, generates U as a VOA by Theorem 8.2.3, U is generated
by two conformal vectors e and f. Thus

Theorem 8.2.7. U is generated by two conformal vectors e and f with central charge
1/2 such that (e, f) = 13/2'°.

Now we can classify all conformal vectors in U. First, we seek all conformal vectors
with central charge 1/2. It is shown in [M1] that there exists a one-to-one correspondence
between the set of conformal vectors with central charge ¢ in U and the set of idempotents
with squared length ¢/8 in Us. So we should determine all idempotents with squared
length 1/16 in Us,. Let X = aw + e+~ f + & f be a conformal vector with central charge
1/2. Then we should solve the equations (X/2)(1)(X/2) = (X/2) and (X, X) = 1/16.
By direct calculations, the solutions of (a, 3,7, d) are (0, 1,0,0), (0,0, 1,0) and (0,0,0,1).
Therefore,

Theorem 8.2.8. There are exactly three conformal vectors with central charge 1/2 in Us,
namely e, f and f.

The rest of conformal vectors can be obtained in the following way. We should seek
all idempotents and their squared lengths in Us. Since we have a set of basis {w, e, f, f }
of U; and all multiplications and inner products are known, we can get them by direct
calculations. After some computations, we reach that the possible central charges are 1/2,
81/70, 58/35, 4/5 and 6/7. In the following, («, 3,7, d) denotes aw + fe 4+ vf +6f.

(1) Central charge 1/2: (0,1,0,0), (0,0,1,0), (0,0,0,1).

(2) Central charge 81/70: (1,—1,0,0), (1,0,—1,0), (1,0,0,—1).

(3) Central charge 58/35: (1,0,0,0).

(4) Central charge 4/5: (14/9, —32/27, —32/27, —32/27), (—7/18,14/27,32/27,32/27),
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(—7/18,32/27,14/27,32/27), (—7/18,32/27,32/27,14/27).

(5) Central charge 6/7: (—5/9,32/27,32/27,32/27), (25/18,—14/27,—32/27,—32/27),
(25/18, —32/27, —14/27, —32/27), (25/18, —32/27, —32/27, —14/27).

8.2.5 Automorphisms

By Theorem 8.2.8, U has three conformal vectors e, f and f . Since €’ # e nor f and
f™ # f nor e, we must have e = f™ = f. Therefore, TeTfTe = Tfre = T,y = TfTeTy and
so (1.77)® = 1. It is clear that both 7, and 7; are non-trivial involutions acting on U and
7. # 7y. Hence 7. and 7; generate S3 in Aut(U). We prove that (7., 77) = Aut(U).

Theorem 8.2.9. Aut(U) = (7, 7y).

Proof: Let 0 € Aut(U). Since U is generated by e and f, the action of o on U is
completely determined by its actions on e and f. By Theorem 8.2.8| the set of conformal
vectors with central charge 1/2 in U is {e, f, f} so that we get an injection from Aut(U)
to Ss. Since (7., 7¢) acts on {e, f, f} as Ss, we obtain Aut(U) = (7., 7). 1

Remark 8.2.10. We note that both w? and w* are Ss-invariant so that the orthogonal

decomposition w = w? + w* is the characteristic decomposition of w in U.

Summarizing everything, we have already shown that U is generated by two conformal
vectors e and f whose inner product is (e, f) = 13/2!° and its automorphism group is
generated by two involutions 7, and 7; with (7.77)> = 1. Hence, we conclude that our
VOA U is the same as VA(e, f) in [M8] and gives a positive solution for Theorem 5.6 (4)
of [MS].

Theorem 8.2.11. The fized-point subalgebra U™ is isomorphic to L(%,0) @ L(£,0) @
L(3,3)® L(2,5) as a Vir(w®) ® Vir(w*)-module. It is a rational VOA.

Proof: Since we may identify U as VA(e, f) in [M8|, we can use the results obtained
in [M8]. It is shown in [M8] that Vir(w®) ® Vir(w?!) = L(3,0) ® L(£,0) is a proper sub
VOA of Uf™7). Since U has both a Zy-grading (8.2.3) and a Zs-grading (8.2.4), all
irreducible L(,0) ® L(2,0)-submodules but L(%,0) ® L(£,0) and L(z,3) ® L(£,5) cannot
be contained in Uf™ 7). Hence, U™ must be as stated. Since U{=77) is a Zy-graded

simple current extension of L(%,0) ® L(£,0), the rationality is clear. 1

8.2.6 Fusion rules

Here we determine all fusion rules for irreducible U-modules. Set U = U° @ U! ¢ U?
with U° = W(0)®@ N(0), U' = W(3)* @ N(3)" and U? = W(3)” ® N(3)~. Recall the
list of all irreducible U-modules shown in Theorem 8.2.6. We note that all of them are
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Zs-stable and each irreducible U-module is induced from one and only one of the following
irreducible U%modules:

2 15

g, k — 07 ?’ ?.

Therefore, all irreducible U-modules are given by the induced modules:

W(h)® N(k), h =0,

Ind%e W (h) ® N(k) = W(h) @ N(k)&{U'Byo (W (h) @ N(k))}o{U*Kyo (W(h) @ N(k))}

where h = 0,% and k = 0, %, % The fusion products for irreducible U-modules can be

computed as follows:
Theorem 8.2.12. All fusion rules for irreducible U-modules are given by the following

formula:

. ( Ind5o W (hs) @ N (k3) )
dimg U U
IHdU()W(hl) X N(kl) IndU()W(hg) X N(k)g) U
(8.2.6)
L e ( U Ryo (W (hs) @ N (ks)) )
W(h1) @ N(k1) W(ha) ® N(k2)/ o’
where hy, ha, hy € {0,2} and ki, ko, ks € {0,%, 2},

Proof: Since all irreducible U-modules are Zs-stable, the assertion immediately fol-

lows from Theorem 4.4.9. ]

8.2.7 Relation to the 3A-triality of the Monster

In this section, we work over the real number field R. We make it a rule to denote the
complexification C ®r A of a vector space A over R by CA. Recall the construction of
our VOA U in Section 4.1. In it, we only used a formula (5.4.3)), which was shown by
Goddard et al. by using a character formula in |[GKO|. Therefore, we can construct U
even if we work over R. To avoid confusions, we denote the real form of U by Ur. We
also note that the calculations on the Griess algebra of Ui in Section 4.4 is still correct

even if we work over R.

Definition 8.2.13. A VOA V over R is said to be of moonshine type if it admits a weight
space decomposition V = @72V, with V5 = R1 and V; = 0 and it possesses a positive
definite invariant bilinear form (-, -) such that (1,1) = 1.

Assume that a VOA V of moonshine type contains two distinct conformal vectors
e and f with central charge 1/2. In [M8|, Miyamoto studied a vertex algebra VA(e, f)
generated by e and f in the case where their Miyamoto involutions 7. and 7; generate
Ss. In this subsection, we shall complete the classification of VA (e, f) in [M§] in the case
where the inner product (e, f) is 13/2'°.
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Theorem 8.2.14. (|M§]) Under the assumption above, the inner product (e, f) is either
1/2% or 13/2'0. When the inner product is equal to 13/2'°, a vertex algebra VA(e, f)
generated by e and f forms a sub VOA in' V. Denote by VA(e, f)™%) the eigen spaces for
Te with eigenvalues £1, respectively. The Griess algebra VA(e, f)a is of dimension J and
we can choose a basis VA(e, f)§*™ = Rw? L Rw* L Re® and VA(e, f)=7) = Ro® such
that w3+ w is the Virasoro vector of VA(e, f) and the multiplications and inner products
in VA(e, f)2 are given as

w(31)w3 = 2(,03’ w:(gl)afl = 07 w(31)v = 51} , W(Bl)'v = U, w(l)w(l) = 2w ,
4 4 5) 14 10 10
W(I)UO — —UO’ wzll)vl = -0, v?l)v?l) — Ew3 50)4 EUO’ v?l)vl _ 3Ul’
2 3 1
<w37w3> = 57 <w4,w4> = ?7 <U07U0> = 57 <U1;U1> =

The complezification CVA(e, f) has a Zz-grading CVA(e, f) = X ® X' & X? and as
CVA (w3, wt) =~ L(%, 0) ®L($, 0)-modules, they are isomorphic to one of the following:

() X°={L(Z0)@L(#3)}eLE0), X'=LE 23 eLE 1),
X2 =L(5,5)" ®L(33);

(i) X°=L(50)@{L(7,0)® L(5,5)}, X'=L(53®LE 35"
X?=L(3.5)®L(3.3);

(i) X°=L(2,000L(E0)® L(E,3)@L(E,5), X'={LEZ L&,
X2 ={L(5.5)® L7 3)};

(iv) X°={L(5,0)® L(5,3)} &{L(5,0) © L(5,5)}, X'=L(5, )" @ L3 3%,
X =L 9 L1

In the above, M~ indicates a Zo-conjugate module of M™.
We will prove the following.

Theorem 8.2.15. With reference to Theorem|8.2.14, only the case (iv) occurs. Therefore,
CVA(e, f) is isomorphic to U = CUg constructed in Section 8.2.1.

Proof: The symmetric group S3 = (7.,7f) on three letters has three irreducible
representations Wy = Cuw®, W; = Cw' and W, = Cw? @ Cw?, where W, is a trivial
module, 7, and 7; act on w' as a scalar —1, and 7. acts on w? and w? as scalars respectively

1 and —1. By the quantum Galois theory, we can decompose CVA (e, f) as follows:

CVA(e, f) = CVA(e, /)7 @ Wo @5 My @ Wy @5 Mz @ Wy,
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where M; and M, are inequivalent irreducible CVA(e, f){™)-modules. In the proof
of Theorem 8.2.14 in [M8|, Miyamoto found that only the following two cases could
be occur: CVA(e, f)™™) = CVA(w?,w*) or CVA(e, f){"77) D CVA(w?,w*), and the
former corresponds to the case (i)-(iii) and the latter does the case (iv). We assume that
CVA(e, f)7) = CVA(w?, w*) =~ L($,0) ® L(£,0). In this case, seen as a CVA(w?, w?)-
module, M* is isomorphic to: L(%,3) ® L(£,0) in the case (i), L(3,0) ® L(£,5) in the case
(i) and L(3,3) ® L(£,5) in the case (iii), and M? as a CVA(w?,w*)-module is isomorphic

to L(%,2)® L(£, 1) in each case. Therefore, CVA(e, f)™ ) has the following shapes:

L(33)@L(£,0)@uw @ L(3,2) ®L(L,5) ®w® in the case (i),
CVA(e, )7 =S LE0) @ LS5 2w @ L, 2@ L(E, ) ®@w® in the case (ii),
L(z.3)@L(E,5)@uw @ L(:,3) @ L(E,5)®w® in the case (iii).

We show that dim CVA(e, f){*~) = 3. Since CVA( f)(Te = Cv' and o' is a high-

3 1

est weight vector with highest weight (3, 3) (O)U and w O)U are linearly independent

vectors in CVA(e, £)7*7). We claim that {wigvh wigv' viyv'} is a set of linearly in-
dependent vectors in CVA (e f)(Te ). Set 2! = wg’o)vl, 22 = w?o)vl and 2° = U?O)Ul.
Using the commutator formula [a (), b)) = Zizo (T) (a()b) m+n—i), an invariant property
(ammyb', b?) = (b', a(_ns2)b?) for a € CVA(e, f)2 and an identity (a)b)wm) = [aq), bun—1)] —
(a)D)m-1), we can calculate all (z*,27), 1 < 4,5 < 3. For example, we compute
(2, 2%) = (vjpyv!, vpyv') as follows:

<U?0)U17U?0)U1> = <U17U(2)U(0)Ul> = (v', [U?Q)aU?O)]U1>

(00y2) 2 + 2000 ) 1) + (152" 0)) ')

) 14 10

- g(vl,w?l)v1> + g(vl,wé)vl> — 3@ Uit
113
81

By a similar way, we can compute all (x’,27), 1 < i,5 < 3, and it is a routine work
to check that det((z*,27))1<;j<3 # 0. Since VA(e, f) = VA(e, f)™) L VA(e, )™,
the non-singularity of a matrix ((x%,27))1<; j<3 implies that z', 2? and z* are linearly
independent. Therefore, dim CVA(e, f )§f€‘> = 3. One can also see that

5
v? = vyt — §(w?0) + wipy v

is a non-zero highest weight vector for L(#,0) ® L(£,0) with highest weight (3,0). Thus,
the possibility of CVA(e, f) is only the case (i). We next show that dim CVA (e, f)éTe_) =

1
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12. Set
Yl =wl gt P =wlwiyvt v =wlywpr!, ¥ = whwlwinr'
v =@t ¥ = wownWint ¥ =wigvh ¥ =wwpu
Y=yt Yt =wpenrt v =gt gt =t

By a similar method used in computations of (z*,z7), we can calculate all (y',37), 1 <
i,7 < 12, based on the informations of the Griess algebra of VA(e, f) and it is also
a routine work to show that det((yi,yj>)1§i7j§12 # 0. Therefore, y*, 1 < i < 12, are
linearly independent vectors in CVA(e, f )f;e‘). On the other hand, the dimension of the
weight 5 subspace of the case (i) is 11, which is a contradiction. Therefore, we have
CVA(e, f){e™) O CVA(w?,w?) and hence only the case (iv) occurs. We can also write
down the highest weight vector explicitly. Set

52 (11 7 (20
3 3 3 3 1 4 4 4 1
V=g (3”(—2) - 2“(—1)“(—@) vt <§W(—2> - W(—l)w(m) v

52 7
3 3 .3 \ 4 .1 4 4
Ty (2“)(—1) B W<o>“<o>> Wl t 55 3 5 (8“’(71) B “<o>w(o>> Yo
5 1 3 28
2 (i3 2.3 .3 2 2% 4 2 0 1
913 (3“’(1) 5‘”(0)“’(0)) L L E
Then one can verify that v* is a non-zero highest weight vector for L(z,0) ® L(£,0) with
highest weight (0,5) by checking that

(CVA(e, )T, wipyv®) = (CVA(e, )7, wigv®) = 0

for s = 3,4 and (v{_,v',v*) = 1405/3". Since CVA(e, f) and CUg have unique VOA-
structures, CVA(e, f) ~ CUg = U. 1

Remark 8.2.16. In the proof above, we note that all (z¢,27), 1 <4,j < 3 and all (y?,y?),
1 < p,q < 12, are completely determined by the Griess algebra of VA(e, f). Therefore,

the existence of the case (iv) immediately implies the uniqueness of CVA(e, f).

By the theorem above, we can find an application of U to the moonshine VOA. Let
V2 be the real form of the moonshine VOA over R constructed in [FLM] and [M5]. Since
Vﬂg is (of course) a VOA of moonshine type, its weight two subspace forms a commutative
algebra, called the monstrous Griess algebra. As shown in [C] and in [M1], there is a one-
to-one correspondence between the 2A-involutions of the Monster and conformal vectors
with central charge 1/2 in (VHE)Q. Hence, there is a pair {e, f} of conformal vectors with
central charge 1/2 in Vlé such that 7.7¢ defines a 3A-triality of M. It is shown in [C] that
the inner product (e, f) of such a pair is equal to 13/2'°. Therefore, the complexification
of the moonshine VOA CVRF contains a sub VOA isomorphic to U by Theorem 8.2.15. As
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expected in [KMY], [Mat] and [M7], we can understand the 3A-triality of the Monster
through the Zz-symmetry of the fusion algebra for the 3-state Potts model L(%,0)®L(z, 3).

Theorem 8.2.17. There exists a sub VOA isomorphic to U in the complexificated moon-
shine VOA CV;. Therefore, CV;¥ contains both the 3-state Potts model L(3,0) & L(%,3)
and the tricritical 3-state Potts model L(2,0) ® L(£,5) and we can define a 3A-triality of
the Monster by the Zs-symmetries of the fusion algebras for these models.
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Chapter 9

Appendix

9.1 Simple Current Super-Extension

In this appendix we present a theory of simple current super-extensions.

Definition 9.1.1. Let VY be a simple VOA. A simple current super-estension of V° is a
simple vertex operator superalgebra ¥V = V° @ V! such that the even part is V° and the

odd part V1 is a simple current V%-module.

Proposition 9.1.2. Let (V = V@ V1 Yy (-, 2)) be a simple current super-extension of
V0. Then the SVOA structure on V is unique over C.

Proof: Let (V,Y}(+,2)) be another simple SVOA structure on V. Since Yy (1,2) =
Y (1, 2) = idy, we have Yy (a, z) = Yi}(a, 2) for all @ € VY. Then by the skew-symmetry
we have Yi}(u, 2)a = e**(VY}(a, 2)u = e*HVYy (0, 2)u = Yy (u, 2)a for all a € VO and
u € V. Since V! is a simple current, there is a scalar A € C* such that Yi}(u,2)v =
AYy (u, 2)v for all u,v € V1. Then define a V%isomorphism ¢ : (V® & V1 Yy (-, 2)) —
(VO@ VLY, 2)) by (a,u) — (a,u/vV) for a € V° and u € V'. Then for a € V° and
u,v € V1, we have

Yo, 2)p(a, v) = (VAL 2)(a,v/vR) = (VR 2)o/ VA, Vi 2)a)

— (VRN (1, 2)0, Yo, 2)a) = @Yo (i, 2)0, Yo (1, 2)a) = Vi (o, 2)(a, 0).
Thus ¢ defines an SVOA-isomorphism between (V, Yy (-, 2)) and (V, Y (-, 2)). 1

Let us recall the definition of Zy-twisted modules of an SVOA.

Definition 9.1.3. Let V = V° @ V! be an SVOA. A graded Zo-twisted V -module is a
pair (M, Yy (-, z)) consisting of an N-graded vector space M = @,enM(n) and a linear

map

D=

YM(,Z) Voar YM(a7z) = Z a(n)z—n—l c End(M)HZ%7z_

ne%Z

I

139
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with the following conditions:
(i) For a € V*, the module vertex operator has the shape Yy/(a, z) = Zne%% amz "
(i7) For a € V and v € M, a,yv = 0 for sufficiently large n € 1Z;

(1i1) Yar(1, 2) = idpy;

(1) aM(s) C M(s + wt(a) — n — 1);

(

v) For Zy-homogeneous a,b € V', the following Z,-twisted Jacobi identity holds:

_ Z1 — & _ —Z9t+ 2z
20 15 ( - P 2) YM(a’a ZI)YM<b7 ZQ) - (_1)6(a7b)20 15 (%) YM(b7 ZQ)YM(au Zl)
0 0
_e(az,a)
s (222) (B22) T valvida o)
Z9 Z9

(9.1.1)

In the rest of this section, we always assume that V° is a simple rational Cs-cofinite
VOA of CFT-type and V = V° @ V! is a simple current super-extension of V°. Then all
V-modules and all Zs-twisted modules automatically have %N—grading resp. N-grading.

Theorem 9.1.4. (1) Every V-module is completely reducible. (2) Every Za-twisted V -

module is completely reducible.

Proof: (1): Let M be a V-module. Take an irreducible V°-submodule W, which is
possible as VY is rational. Then V!-W is not zero and is irreducible V°-module by Lemma
4.4.1. Tt is clear that the V! - W is not isomorphic to W as a V%-module as the difference
between the top weight of W and that of V- W isin 1/2+ Z. Then W + (V! - W) is a
direct sum and is an irreducible V-submodule of M. Thus M is completely reducible.

(2): Let M be a Zy-twisted V-module. Take an irreducible V°-submodule W of M.
By Lemma 4.4.1, V! - W is a non-trivial irreducible V°-submodule of M. If V1. W is not
isomorphic to W as a V%-module, then W+ (V1. W) is a direct sum and so is an irreducible
V-submodule of M. In this case we are done so we assume that V- W ~ W as a V°-
module. If V1-WW = W, then we are also done so that we consider the case W+ (VW) is a
direct sum of irreducible V%-submodules. Take a V°-isomorphism ¢ : W — V1. W. Then
o WYar(lyr, 2)lw and Yar(+|yr, 2)olw are VO intertwining operators of type V! x W —
V1. W so that there is a scalar A € C* such that ¢ 'Y, (u, 2)|w = A\Yas(u, 2)p|w for all
u € V1. Then by replacing ¢ by v Ap, we may assume that A = 1. In W @ (V- W),
consider V9-submodules W* = {(w, pw) | w € W}. Then W (VW) = WHeW ™~ and
Yar(u, 2)(w, ow) = (£ (u, 2)pw, Yar(u, 2)w) = (Lo Yar(u, 2)w, ¢ - o 1Y (u, 2)w) =
+(o™ Y (u, 2)w, ¢ - ¢ Y (u, 2)w) for all uw € V1. Therefore, W* are irreducible V-
submodules and so W & (V! - W) is a completely reducible V-submodule of M. Thus M
is completely reducible V-module. 1
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Proposition 9.1.5. (1) Let (M, Yy (+, 2)) be an irreducible V -module. Then M as a V°-
module is a direct sum of two inequivalent irreducible V°-submodule and the V-module
structure on M is unique over C.

(2) Let (M,Yy(+, 2)) be an irreducible Z,-twisted V-module. If M as a V°-module is not
irreducible, then M is a direct sum of two inequivalent V°-submodules and the V-module
structure on M is unique over C. On the other hand, if M is irreducible as a V°-module,
then there are exactly two inequivalent irreducible Zo-twisted V -module structure on M

and anther structure is given by its Zs-conjugate.

Proof: (1): Let W be an irreducible V%-submodule of M. Since the powers of z
in the vertex operator map Yj,(+,z) is contained in Z, the difference between the top
weight of V1 X0 W and that of W is in 1/2+Z. Thus M as a V°-module is a direct sum
W@ (VIR0 W) of two inequivalent V%-submodules by Lemma4.4.1. For convenience, we
set WO :=W and W' := V! Kyo W. Let (M,Y};(-,2)) be another irreducible V-module
structure. Then we may assume that Yys(a,z) = Y (a, 2) for all a € V? as Yy (1,2) =
Yi;(1,2) = idys. Since V! is a simple current V%-module, there is a scalar A € C* such
that Yy (u, 2)w® = AYys(u, 2)w® for all uw € V! and w® € W, Then by the associativity
of vertex operators (2.3.2) we have Y, (u, z)w! = (1/)) - Yas(u, z)w! for all w € V! and
w! € W, Now define a linear isomorphism ¢ : (WY@W?! Yy, (-,2)) — (WPaW? YL, (-, 2))
by p(w®, w') = (w° /v, vV w?) for w' € Wi, i =0,1. Then

Y]\14<u7 Z)@(wov wl) = Y]\14 (U, Z) (w()/\/X, \/le) = (\/XY]\14<U“7 Z>w17 Y]\14(u7 Z>w0/\/x)
= (Yar(u, 2)w' VA, VAY s (u, 2)w®) = o(Yar(u, 2)wt, Yo (u, 2)w’) = oY (u, 2)(w®, w').

Thus ¢ defines a V-isomorphism between (M, Yy, (-, z)) and (M, Y}, (-, 2)). This completes
the proof of (1).

(2): Let W be an irreducible V°-submodule of M. In this case it may happen that
VIRyo W ~ W as a V%module because the powers of z in the vertex operator map
Ya(-lyr,2) arein 1/2+Z. Tf VIRyo W 22 W as a V%-module, then M = W & (V! Kyo W)
and we can prove the uniqueness of Zo-twisted V-module structure on M by a similar
way to (1). So consider the case V! Kyo W =~ . Then we see that M = W by
Theorem 9.1.4. Let (M,Y},(-,2)) be another irreducible Z,-twisted V-module structure
on M. Then Yy(a,z) = Y (a,z) for all @ € VY and there is a scalar y € C* such
that Y, (u,2) = uYay(u,z) for all w € V. Then by the associativity of the vertex
operator map (2.3.2) we have y? = 1. Thus p = +1 and so (M, Y},(+, 2)) is isomorphic
to either (M, Yy (:, z)) or its Zs-conjugate module structure. So it remains to show that
the Zs-conjugate module is not isomorphic to (M, Yy (-, 2)). Denote by (M,Y,,(-,2))
be the Zs-conjugate module of (M, Yy (+,2)). Suppose that there is a V-isomorphism
v (M, Yy(-,2) — (M,Yy,(-,2)). By definition, there is a V%-isomorphism o : M — M
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such that Yy, (u, 2)o = oYy (—u, 2) for allu € V. Then o' is also a V%-isomorphism on
M and so there is a scalar o € C* such that 0~ = a by Schur’s lemma. Since V' is simple
SVOA and M is an irreducible Zy-twisted V-module, Yi;(u, z)w # 0 for all 0 # u € V!
and 0 # w € M. However, 0 # Yy (u,2)w = acYy(u,2)w = oYy (—u,z)ow =
=Y, (u, 2)pw = =Yy (u, z)w, a contradiction. Thus (M, Y (-, z)) and its Zs-conjugate
module structure are not isomorphic. 1

By the preceeding theorem and the proposition above, we have determined the struc-
tures of V-modules. Next, we complete a classification of V-modules.

Proposition 9.1.6. Let (WO Yyo(-, 2)) be an irreducible VO-module. If V1R, o WO 2 WO,
then the difference between the top weight of V&0 WO and that of W° is contained either
inZ orin 1/2+Z.

Proof: The proof is similar to that of Lemma 4.5.1. Suppose W' := V! X0 W? is
not isomorphic to W% as a V°module. Then V! Kyo W' = WY by the associativity for
the fusion product. Let hy € Q be the top weight of W and h; € Q that of W', and set
k = —ho+hy. Let I°(-, z) be a non-trivial V' intertwining operator of type V1 x W — W1
and I'(-,z) a non-trivial V%intertwining operator of type V! x Wl — W9 Then the
powers of z in I°(-, z) are contained in k + Z and those of z in I'(+,2) are in —k + Z by
definition of intertwining operators. By Theorem 3.7.5, there is a scalars A\ € C* such
that

(v, I (u, 21)I°(v, 20)w®) = Mu, I' (v, 22)1°(u, 21 )w®),

where v € (W@ W1)* a € VO u,v € V! and w' € W, i =0, 1. Since both
z]fz;k(u, Il(u, zl)Io(v, zo)w) and szz’;(u, Il(v, ZQ)[O(U, 21)w)

contain only integral powers of z; and 23, we obtain the following equality of the mero-
morphic functions for N > 0:

(21 — 20)Nug 2P 2 " (v, I (u, 20) 10 (v, 20)w)
= Mz — 2) Vgt ey 2Rk (v T (v, 20) 10 (u, 21 )w).
Therefore, the monodromy-freeness implies 2k € Z. 1

Theorem 9.1.7. Every irreducible V°-module lifts to be either an irreducible V -module
or an irreducible Zo-twisted V -module. More precisely, let W be an irreducible V°-module,
then

(1) if VI Ryo W £ W as a V°-module, then W & (V! Kyo W) is the unique irreducible
V -module or irreducible Zo-twisted V -module containing W as a V°-submodule.

(ii) if VIRyo W ~ W as a V°-module, then there are exactly two inequivalent irreducible

Zo-twisted V -module structure on W.
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Proof: Let (W% Yiyo(+,2)) be an irreducible V%-module. First, assume that V! Xy
W70 is not isomorphic to W° as a V%-module. Set W' := V1 X0 W and take non-trivial
VO intertwining operators I°(-, 2), I'(-, z) of types V! x W0 — Wt VI x Wt — WO
respectively. Then by Theorem [3.7.5 there are scalars \g, Ay € C* such that

<V7 Il(u17 Zl)IO(u2’ 22>w0> = )‘0<V7 YVVV0 (YV(UI’ Zﬂ)u27 22)w0> |Zo:Z1—227

(v, I%(ut, z1) I (u?, z)w') = A (v, Yipr (Yo (ul, 20)u?, 29) w0 gmay — 20

where v, u? € V1, w' € Wi i =0,1and v € (W°® W')*. Moreover, since Yiy:(1,2) =
idy+, we have

(v, I'(u*, 20) Yy (a, z)w") = (v, I'(Yy (u', 20)a, 20)W") | sg—zy 2
for all @ € V°. Then by considering
(v, I'(u, 20) I (0?, 20) T (0, 2)w)

for u',u? u? € V1, w' € Wiand v € (W° @ WhH*, we have \g = A\;. Then by replacing
I'(-,2) by (1/v/X)I(-, 2), we may assume that \g = \; = 1. Now define the vertex
operator map f/(, z) on WO @ W by

Y(a, 2)w' == Yiyi(a, 2)w', Y (u,2)w’ = I'(u, 2)w'

fora e VO uw e V!and w® € W i = 0,1. Then we already have the associativity for
Y(-,2). Since

5
~_
<
N
<
o )
I\
N
=
—
<
N
w
~—
g@
~
o
N
&
(N
S

Ju?, 22)

Ju®, z5) Mzamor—z2 =202

Yy (u?, 25)u, 23)W")| 252y 25 25 =20 25
(u', z6)u’ )

)
) Z3)w |26—21—23,Z5=22—23

_<V7 Ii(YV(YV(U27 2;7) )u37 z3) >|Z7 =29—21,26=21—23
_<l/ YW”l(YV( ) # ) 1)[’(’&3,23) >‘Z7=22*Z1
— (v, T'(u?, 29) T (u?, 29) T(

we also have the commutativity for Y'(-, z). Thus (W°@W?, Y (-, 2)) is either an irreducible
V-module or an irreducible Zs-twisted V-module by Proposition [9.1.6. This completes
the proof of (i).

Next, consider the case V! Xyo W? ~ W9 as a V% module. For simplicity, we write
(W, Yw (-, 2)) for (W° Yyo(,2)). Take a non-trivial V'-intertwining operator J(-,z) of
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type V1 x W — W. Then powers of z in J(-, z) are half-integral by definition of inter-
twining operators. By Theorem 13.7.5, we have

<V7 J(u7 ZI)YW(a’v 22)w> - <‘](YV(U7 ZO)CL, Z2)w> |Z0221—Z2
foralla € V°, u € V!, w € W and v € W*. Moreover, there is a scalar A € C* such that
(v, J(ut, 21)J(u?, 22)w) = Mu, Yir (Yo (ut, 20)u?, 22)W0) |22y — 2,

for u*,u*> € V' again by Theorem 3.7.5. Then by replacing J(-, z) by (1/vVX)J(-,z), we
may assume that A = 1. Then by an argument similar to that in the proof of (i) we can
prove the commutativity

(v, J(u', 21)J(u?, 20)w) = — (v, J(u?, 25)J (u', 21 )w).

Thus by defining the vertex operator map f/(, z) on W by

Y(a,z):=Yw(a,2), Y(u,z2):=J(u,z)

for a € V° and u € V!, we have an irreducible Zs-twisted V-module structure on
(W,Y (-, 2)). This completes the proof of (ii). 1

We recall the following extension property in Theorem 4.6.1:

Theorem 9.1.8. Let V9 be a simple rational Cy-cofinite VOA of CFT-type, and D an
abelian group. Assume that we have a set of inequivalent irreducible simple current V(00)-
modules {V @9 | o € D, 3 € Zy = {0,1}} with D ® Zy-graded fusion rules V(151 X, 0.0,
Vie2h) — ylateabitb) for any (aq, B1), (ag,B2) € D @© Zy. Moreover, assume that
Vb = @acpV @0 forms a D-graded simple current extension of V00 and V(00 g 1701
forms a simple current super-estension of VOO . Then Vpay, = @(aﬁ)eD@ZZV(a’B) has a
unique structure of a simple vertex operator superalgebra with even part Vp and odd part

BacpV @Y. Namely, Vpaz, forms a simple current super-extension of Vp.

Remark 9.1.9. By this theorem, we can introduce a simple SVOA structure on VB =
VBY @ VB! without reference to V% as a simple current super-extension of VBY.

Finally, we present a lifting property of automorphisms.

Theorem 9.1.10. Suppose that o € Aut(V?) satisfies (V)7 ~ V1 as a V°-module. Then
there is a lifting ¢ € Aut(V) such that o(V?) =V (V') =V! and o|yo = 0.

Proof: By assumption, we can define a o-conjugate super-extension V7 of V. Then
by the uniqueness of the SVOA structure in Proposition 9.1.2, we have a desired lifting
o € Aut(V). Note that this lifting is unique up to multiple of the canonical Zs-symmetry
on V. 1
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9.2 Proof of Theorem 5.1.12

In this appendix, we present the detailed proof of Theorem 5.1.12. We use the same
notation as in Section 4.2. First, we list the defining relations and useful identities. Let
acV,u € W' i=1,2,3. Then the defining relations are as follows.

E*(h, 2)bi = ¢:EF(h,z),  E*(h,2)¢; = ¢;E*(h, 2),
hoyoi = ¢i (hoy +7) . hdi = ¢ (ho) +7) 5
A(h,z)¢i = 27¢iA(h, 2),  A(h, 2)¢; = 27§ A(h, 2),
Y (¢oa, z)u' = E~(h, 2)¢;Y (a, 2)A(h, C2)u,
Y (¢oa, 2)pu’ = E~(h, 2)m; '¢loY (27 A(h, 2)a, 2) A(h, (2)u,
I (ul, 2)pou® = P3I°(A(h, 2)ul, 2)u?,
I'Y(pyut, 2)u? = E=(h, 2) 31 (ul, 2) A(h, (2)u?,
'Y prut, 2)pou? = B~ (h, 2) 75 s 1°(o7 P A (R, 2)prut, 2) A(h, (2)u?.
And the followings are taken from Lemma 5.1.2.
A(h, 20) 19 (x, 20) = T7(A(h, 20 + 20)x, 20) AR, 22),
I'(z, 29)E=(h, 21) = E=(h, 21) 17 (A(h, 20 — 21) A(=h, 29)x, 29),
T'I(E=(h, 21)x, 20) = E7(h, 21 + 22) E~(=h, 20) [ (, 20) A(=h, C22) AR, ( (29 + 21)).
The followings are given by choosing suitable 7;’s.
19(r et 2) = B~ (2h, 2)m5 4T, 2)A(2h, C2),
I10(ut, )y Ly = w3 ' dhps I (A (2R, 2)ul, 2).

In the following argument, we will freely use the relations and identities above. We shall

show the following Jacobi identity.

=) (Zl - 22) (zl — Z2>al Y (poa, 1)1 (z, 22)y

20 20
—(=1) gz ty (‘ZQ i Zl) (“"2 — Zl) I(z, 2)Y (¢oa, 21)y (9.2.1)
20 20
o
=210 (Z2 + ZO) (22 + ZO) I(Y (¢oa, 20)x, 22)y,
1 1

1

where a € V, 2 = u! or ¢ut, and y = u® or ¢yu?. We divide the proof into four cases

according to the parities of x and .
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(i): (2,y) = (u',u?). In this case, we have
Y (doa, 21) 1% (u?, 25)u?
= B~ (h, 21)3Y (a, 20) A(h, C21) IO (u!, 2)u?
= B~ (h, 21)3Y (a, 20) I (A(h, C21 + z2)ut, 20) A(h, C21 )i,
19 (i), 20)Y (¢hoa, 2 )2
= [ (u!, ) E~(h, 21)$aY (a, 21) A(h, C21 )u?
= B (h, 21)IN(A(h, 25 — 2)A(—h, 2)ul, 20) oY (a, 1) A(R, (21 )2
= B (h, 1) 831 (A(h, 22) A (R, 25 — 21) A(—h, 22)ut, 22)Y (@, 21) A(h, €21 )u?
= B (h, 21)$3 1% (A(h, 20 — 21)ut, 20)Y (a, 20) A (h, C21 )i

By
20—1(5 <Z1 Zz) A(h,CZ1 + 22)u1 _ 20—15 (21 Zz) (21 Zz) A(h,(’zo)ul
20 20 20
and
=y <—Zz_+z1> A(h, 29 — 2 ) = 716 (ﬂ) o (ﬂ) A(h, Cao)u,
20 <0 20

the left hand side of (9.2.1)) is equal to

=) (Zl - 22) E~(h, 21)63Y (a, 2) (A (h, Cz0)u, 22) A (R, C21 )ui?

0

—25 0 (%:_Zl) E™(h, 21) 931" (A(h, Czo)u', 22)Y (a, 21) A (R, Cor)u’

=26 (22 i ZO) E=(h, 21)¢3I(Y (a, 20) A(h, Czo)u', 22) A(h, (21 )u?

21

On the other hand, the right hand side of (9.2.1) is equal to

51 ( - ) ( - ) 1Y (doa, o)l 20)0

21 21

ey (ZQ + ZO) (22 + ZO) T(E=(h, 20)61Y (a, 20)A(h, C2o)ut, 2)u

21 21
.
— .15 (Zz : ZO) <22 : ZO) E~(h, 2 + 20) E~(—h, 25)
1 1

x 11 (1Y (a, 20)A(h, C%)Ul, 22) A(=h,Cz2)A(h, (22 + Zo))u2
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21

ey ( ! ) B (h, 21) B~ (—h, 22) B~ (h, 2)

<I% (Y (a, 20)A(h, Czo)ut, z2) A(h, C22) A(—h, Cz2) A(h, C21)u’

=210 <22 + ZO) E=(h, 21)$31%°(Y (a, 20) A(h, Czo)ut, 20) A(h, C21)u?.

21

In the transformation above, we also used that

2t (22 i ZO) <Z2 i ZO) A(h, ¢(z0 + 20))u? = 2,716 (Z2 i ZO) A(h, Cz)u.

21 21 21

Hence, (9.2.1) holds in this case.
(ii): (z,y) = (¢1u, u?). We have

Y((boaa Zl>110<¢1u17 ZQ)UQ
=Y (¢oa, 21)E~ (h, z0)¢31%(u', 22) A(h, C22)u?
= £~ (h, Zl)ﬂgl%%y(z?A(}% z1)a, 21)A(h, (1) B~ (h, 29) 1% (u', 22) A(h, C29)u?

= 2V E~(h, 21)m3 ' ¢h3Y (A(h, 21)a, 1) E~ (R, 23) (1 B ﬁ)v

21
< A(h, Cz) T (!, 20) A(h, Czo)u?
= (21 — 2) E~(h, 210)75 '3 B (h, 22)Y (A(h, 21 — 22) A(—h, 20) A(R, 21)a, 21)
< IO(A(h, C21 + 22)ul, 22) A(h, (1) A (R, C2o)u?
= (21 — ) E~(h, 20) E~ (h, 22)75 "¢y Y (A(h, 21 — 20)a, 1)
XTO(A(h, C(z1 — 22))ut, 20) A(h, C21) AR, C29)u?,
I (put, 20)Y (doa, 21 )u?
= I (¢ul, 29) E~(h, 21)92Y (a, 21)A(h, (21 )u?
= E7(h, 20)m5 310 (20 A(h, zo)ut, 20) A(h, C22) E~ (hy 21)Y (a, 21) A(h, (21 )u?

= B (2 IV A ) 2 B (1 2)
2
xA(h, C2)Y (a, 21)A(h, C21)u?
= (2 — 21) " E~(h, 20)73 ' ps B~ (h, 21) IP(A(h, 22 — 21)A(—h, 20) A(h, z5)ut, 25)

XY (A(h, 29 + 21)a, 21)A(h, C21) A(h, C20)u?
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= (22 — Zl)’yE_<h, Zl)E_(h, 22)7.‘,3—1¢g¢3100(A<h’ Z9 — 21>u1, 22)
XY(A(hv —Z9 + Zl))a7 Zl)A(ha gzl)A(ha gz?)UQ'
Therefore, the left hand side of (9.2.1) is equal to

=) ("‘1 - ZQ) B (hy 21) B~ (h, 2)75  dhdsY (A(R, z0)a, 21) IO(A(R, Czo)ul, 2»)

20

X A(h, Cz1)A(h, Cz)u?

20

—20_15 (_ZQ—M) 20 E~(h,z1)E~ (h, 22>7T3_1¢/3¢3_[00<A(h7 Czo)ul, 29)
XY<A<h7 ZO)a7 ZI)A<h7 CZI)A(hv CZZ)U“Q
=20 (%IZO) 20 B~ (h, 21)E~(h, 22)m5 3 10 (Y (A (R, 20)a, 20) AR, C20)ut, 22)

XA(h, Cz1)A(h, Czo)u?.

On the other hand, the right hand side of (9.2.1) is equal to

21_15 (22 ha ZO) <Z2 - ZO) [OO(Y(%G, ZO)¢1U1> Z2)u2

Z1 21
221_15 (22+Zo) <22+20>a2
21 21
x I(E~(h, 20)m ¢ Y (20 A(h, 20)a, 20) AR, Czo)ut, 20)u?

.
— 2 (Z2 + ZO) (Z2 + ZO) STE(h, 20+ 22) E~(—h, 2»)

21 21

xI(m 7' ¢ Y (A(h, z0)a, 20) A(h, Czo)ut, 20) A(—h, Cz2) A(h, ( (22 + 20))u?

= 2715 (ZZ + ZO) B (h, 1) B~ (—h, )

21

X107 o1 Y (A(h, z0)a, 20) A(h, Czo)ut, ) A(—h, Cz0) A(h, (21 )u?

— (M) VB (hy 1) E~(—h, ) B~ (2h, 25)75 s

21

X I°(Y (A(h, z0)a, 20) A(h, Czo)ut, 29) A(2h, C22) A(—h, 22)A(h, (21 )u?

= 2715 (Z2 + ZO) B (h, ) B~ (h, 2)m5 s

21

X I°(Y (A(h, 20)a, 20) A(h, Czo)ut, 20) A(h, C21)A(h, C20)u?.
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Hence, we obtain (9.2.1)) in this case.
(iii): (z,y) = (u', pou?). We have

Y (goa, 21) 10 (ul, z5) o
=Y (¢oa, 21)d3 " (A(h, z0)u', z0)u?
= B~ (h, z21)75 " s 3Y (2] AR, 21)a, 21) A(h, (1) I (A(R, 29)ut, 20)u?

= 2JE~(h, 21)75 "3 (A(h, 21)a, 21) I (A(h, (21 + 22) AR, 20)ut, 25) A(h, C21)u?,

I1°(ut, 20)Y (¢oa, 21 ) pou?
= 1!, 20)my L b pa B (R, 21)Y (2] A(h, 21)a, 21) A(h, (21 )u?
= 2] 75 s IO (A(2h, zp)ul, 20) E~(h, 20)Y (A(h, 21)a, 21) A(h, (21 )u?
= 73 s B (h, 20) I°(A(h, 22 — 21)A(=h, 25) A(2h, 20)u’, 2,)
XY (A(h, z1)a, z1)A(h, Cz1)u?

= 2/ E~(h, zl)wgl¢g¢3]00(A(h, 29 — 21)A(h, z)ul, 20)Y (A (R, 21)a, 21) A(h, (21 )u.

Therefore, the left hand side of (9.2.1)) is equal to

21—15 (Z2 :; ZO) Z¥E7<h,21)71'3_1¢g¢3

XY (A(h, z1)a, 20) A(h, Cz0) A(h, 29)ul, 20) A(h, C21)u?.

On the other hand, the right hand side of (9.2.1) is

Ao (ZQ . ZO) <22 . ZO) ITNY (¢oa, 20)ut, 22)ou?

21 21
.
= 27 (22 : ZO) <Z2 : Z“) [YY(E~(h, 20)1Y (a, 20) A(h, Czo)ut, 20) pou?
1 1
o
— 215 (Z2 j ZO) <Z2 j ZO) E~(h, 2 + 20) B~ (—h, 25)
1 1

X I (1Y (a, 20) A(h, Czo)ut, 20) A(—=h, C29) A(h, { (29 + 20)) Pou?

21

=215 (22 + Z°> E~(h, 21)E~(—h, 2) " (1Y (a, 20) A(h, Czo)ut, 20)

X ¢2(C22) TV A(=h, C22)(C21) AR, (21 )u”

149
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—z35<@+“»ngwkmxng—ngEwhﬁgmh%@

21

XIOO(Z;A(ha ZQ)Y(C% ZO)A(h> CZO)UI, Zz)A(ha CZ2)A(—h7 CZQ)A(h, CZ1)U2

:gw(@+%>ﬁEwmaw;%%

21

XY (A(h, 2 + 2z0)a, 20) A(h, 22) A(h, Czo)ut, 20) AR, (21 )u?

=z (m) 2/ E~(h, zl)wglqﬁggbg

21

X I(Y (A(h, z1)a, 20) A(h, Cz0) A(h, z2)ut, 22) A(h, (21 )u?

Hence, we get (9.2.1) in this case.

(iv): (z,y) = (¢1u', pou?®). We have

Y (goa, 21) M (prul, zo)pou?
=Y (¢oa, 21)E~(h, 20)m5 L3I (2 A(h, z0)ut, 2) A(h, Cz)u?
= 20 E7(h, )Y (A(R, 21 — 22) A(=h, 21)poa, z1) 75  Psps I (A(h, 20)ut, 20) A(h, (20)u?
= 2B~ (h, )Y ((z1 — 22)72] "o A(h, 21 — 20) A(—h, 21)a, 1) 75  Phps
X TO(A(h, z9)ut, 29) A(h, C29)u?
=21 '29(21 — 20)YE7 (h, 20) E~ (h, 21)p3Y (A(h, 21 — 22) A(—h, 21)a, 21) A(h, (21)
x5 s pa I (A(h, za)u', 20) A(h, Czo)u?
=21 72) (21 — 22) " E~(h, 21) E~ (h, 22) 93Y (A(h, 21 — 22) A(=h, 21)a, 21) 75 Py
X (C21) A (hy C21) IP(A(h, 29)ul, 29) AR, C29)u?
= 212)(21 — 22)"E~ (h, 21) E~ (h, 23) 373 ' p3Y (A(h, 21 — 20) A(h, 21)a, 21)
XTO(A(h, €21 + 29) AR, z9)ut, 20) A(h, C21)A(h, C29)u?,
I'(prut, 20)Y (doa, 21) pou?
= I'0(pul, 20) E=(h, 21) 7y ' bt Y (2] A(h, 21)a, 21) AR, (21 )u?
= 2] E7(h, 20)I"°(A(h, 2y — 21) A(=h, z0)rut, z0)75 " dhdaY (A(R, 21)a, 21)A(h, (21)u?
= 2] E7(h, 20) 1" (2 — 21) 25 "1 A(h, 25 — 21) A(—h, 20)u, 29) 75  dhro
XY (A(h, z1)a, 21)A(h, C21)u?
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=225 (22 — 21)YE~ (h, 21) E~ (h, 22) 931 (A(h, 22 — 21) A(—h, 29)u’, 22) A(h, (22)
X7y it Y (A(R, 21)a, 1) A(h, (21 )u?
= 2]z (20 — 21) " E~(h, 21) B~ (h, 22) 3T (A(h, 29 — 21)A(—h, 20)u’, 22) 75 ' o
X (C29)2Y (A(h, €22 + 21)A(h, 21)a, 21) A(h, C22) A(h, 21)u?
= 2]2) (20 — 21) " E~(h, 21) E~(h, 22) p3735 - 43I (A (R, 20 — 21)A(h, 20)ut, 25)
Y (A(h, Czo + 21)A(h, 21)a, 21)A(h, C21)A(h, 29)u?
Thus, the left hand side of (9.2.1)) is equal to

-~ 29 + Z _
1 ( : 0) A AE (b 21) B (h, 2) 53 s

Z1

XI®(Y (A(h, 20) AR, 21)a, 20)A(R, Cz0) A(h, 20)ut, 22) A(h, C21)A(h, Czo)u”

On the other hand, the right hand side of (9.2.1) is equal to

) (22 + Zo) (Z2 + Zo) 1YY (doa, 2z0)drut, zp) hou?

21 21

=210 <22 + Zo) (22 + Zo)_%
1 Z1
X IY(E=(h, 20)m ¢ 01Y (2 A(h, 20)a, 20) A(h, Czo)ul, 20) o

.
—.1p (22 * ZO) (ZQ + ZO) B (h, 20+ 2)E-(—h, 2)

21 21

x I (1 @ Y (A(h, z0)a, 29) Ak, Czo)ut, ) A(—h, C20) A(h, (22 + 20)) pous®

21

=270 <Z2 + ZO) 20 B~ (h, 21)E~(—h, 20) I (7 ¢ 1Y (A(R, 20)a, 20)

A(h, Czo)u', 22)p2(C22) 77 (C21) T A(=h, C22) A(h, 21 )u?

. + iy
= (2R ) 0 B ) B (- )l (Al ) 61Y (Ao )

21

A(ha <20>u17 22)A(_h7 CZQ)A(hv CZI)UJQ

) <Z2 + ZO) 202125 "E~(h,z21)E~(—h, 22) 3

21
X TO(zm T Y (A(h, 20 + 20) A(h, 20)a, 20) A(h, 22) A(h, Czo)ut, 22)
A(=h, Cz9)A(h, (21)u?
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_ 29+ 2 _
=215 ( 2 0) 2212 B (hy 1) B~ (—h, 22) 3B~ (2h, z0) w5 dyds

21
XT(Y (A(h, 21)A(h, 20)a, 20) A(h, 29) A(h, Czo)ut, 20) A(2h, C22)
XA(=h, Czo)A(h, (21 )u?

_ 29 + 2 _
) ( 2 . 0) 202) 2 E~(h, 21) E~ (R, 22) 373 * s

1
XIP(Y (A(h, 21)A(h, 20)a, 20)A(h, z2) A(h, Czo)ut, 22) A(h, Cz1) AR, Cz2)u®.
Hence, we have the desired identity (9.2.1)). 1
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