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1. HEEGAARD FLOER HOMOLOGY AND STRONG L-SPACES

Let Y be a closed oriented three manifold. Ozsvath and Szabd introduced
the Heegaard Floer homology HF(Y) in [7]. This is a topological invariant of
closed oriented three manifolds.

Now, we recall a Heegaard decomposition (3, a,3) of a closed oriented three
manifold Y shortly. It consists of three data as follows.

Ua, Ug : genus g handlebodies

Y : a closed oriented genus g-surface

a={ai, a4}, B={p1, --,By} : attaching circles

Then, Y can be represented uniquely by attaching these handlebodies (see Figure
1).

Y =U,Us Uﬁ

(Note that attaching circles are characterized as pairwise disjoint, homologically

linearly independent, simple closed curves on X.)

¥ B1 32 B3 .~ 1

®

\_qu1

Ua /A

ay QO3

FIGURE 1. Heegaard decomposition

We sketch the definition of Heegaard Floer homology of (X, «, 3). Define

ToNTs = {7 = (T151): T20(2) " > Tgo(9))|Tic(i) € @i N Bs(i), 0 € Sy},
where S, is the symmetric group on g letters.
Then, the Heegaard Floer chain complex of (X, a, 3) is defined by

Key words and phrases. Heegaard Floer homology, L-space, branched double coverings, alter-
nating link.
*usui@ms.u-tokyo.ac. jp.
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ﬁ(Y) = {the Zy-vector space generated by the elements of T, N Ta}.
We use the following fact (see [7]).

Fact 1. 30 : ﬁ(Y) — ﬁ(Y) : homomorphism s.t. 8- 0 = 0.

Roughly speaking, the boundary map d counts the pseudo holomorphic Whitney
disk. Thus, we can define the Heegaard Floer homology of (%, a, ), i.e.,

~ HF(S, o, B) = Ker(8) /Im(D)

Actually, this homology is independent of the choice of the Heegaard diagram
representing Y. That is, this becomes a topological invariant for closed three man-
ifolds. We denote it by }/IF(Y)

Definition 1.1 (L-space, strong L-space). Let Y be a rational homology three-
sphere.

Y is an L-space (}:e)f ﬁ(Y) = leHl(Y;Z)‘.

Y is a strong L-space (}:ef 3(%, o, ) representing Y s.t.
|To NT3| = |H1(Y; Z))].

Remark. We can define a strong L-space in another way. Y is a strong L-space

< 3(%, a, ) representing Y s.t. the boundary map d is the zero map.
We call such a diagram (3, «, 8) a strong diagram.

The above definitions first appeared in [1].

2. SMOOTHING ORDER AND MAIN THEOREM

Let Dy, be a link diagram of a link L. A smoothing is the following operation.

K =)0 X

FIGURE 2. smoothing

Definition 2.1 ([2] and [9]). Let L; and Ly be alternating links in S3.
Dy, and Dp,: alternating link diagrams of L; and Lo

f .
Dy, € Dy, (}:G) Dy, contains Dy, as a component

after smoothing some crossing points of Drp,.

Ly < Lo (}:6)10 V Dy, : a minimal crossing alternating link diagram of Lo,

3 Dy, : a minimal crossing alternating link diagram of L; s.t.
Dy, CDyp,.

Note that we can define < for any two links by ignoring alternating conditions
(see [2]).

Example: It is easy to see that (the Hopf link) < (the trefoil knot).

Let us define a class of alternating links by using this smoothing order.

Definition 2.2. Lz = { an alternating link L in S* such that Brm & L},
where Brm is the Borromean rings. (We denote the following link diagram of

Borromean rings by Brm too).
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FIGURE 3

FIiGURE 4. The Borromean

Now, let us denote (L) the double branched covering of S branched along a link L.

Theorem 2.1 (Usui). Let L be an alternating link in S®. If L satisfies the following
conditions:

e LcLg—,ie Brm«L,

Brm
e X(L) is a rational homology three sphere,

then (L) is a strong L-space and a graph manifold (or a connected sum of graph-
manifolds).

Note that the following theorem seems stronger than Theorem 2.1.

Theorem 2.2. [3] L :an alternating link in S*
Y(L) is a rational homology three sphere = ¥(L) is a strong L-space,

However, we can prove Theorem 2.1 independently and systematically. In this
article, we describe some ideas to prove Theorem 2.1.

3. IDEAS OF PROOF

There are three ideas to prove Theorem 1.1.

(1) Generalization : We start from the diagram of lens space.

(2) Transformation : We use the Montesinos trick.

(3) Induction : We replace the definition of L5~ with an inductive difinition
to prove Theorem 2.1 inductively.

@ First, we review the Heegaard diagrams of lens spaces which are basic examples
of (strong) L-spaces.

Example:

~ CF(L(p,q)) = Z5 and |T, N Tp| = p = [H1(L(p, q); Z)-

~ ﬁ'(L(p, q)) =75 and L(p, q) are strong L-spaces.
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X1 X2 X3

sl

FIGURE 5. Lens space L(p,q) and its Heegaard diagram (p =
3.¢=1)

Question. Can we find other strong diagrams in this way? (Are there any other
strong diagrams which are naturally induced from some surgery representations of
three manifolds?)

Definition 3.1. (T,0,w) : an alternatingly weighted tree C<1§>f

e T is atree. Let V(T') be the set of vertices of T
Vi V2
—
e 0:V(T)— {1} is amap s.t o(vy) = —o(vs) for €12
e w:V(T)— {0,1,00} is a map.

Given an alternatingly weighted tree (T, 0, w), we can define a three manifold
Y(7,0,w) naturally by performing surgeries along the unknots in S3 (see Figure 3.)

FIGURE 6

We can take a Heegaard diagram of Y{7, ,) naturally (see Figure 3). More-
over, this diagram becomes a strong diagram. (That is, we can prove |T, N Tg| =
‘Hl ()/(T,U,w); Z)|)

Proposition 3.1. (T,0,w) : an alternatingly-weighted tree
If Y1 o0y is QHS, then Y(r ;. is a strong L-space and a graph manifold (or a
connected sum of graphmanifolds).

(2) Next, we describe the Montesinos trick shortly by using an example (see 3,
3 and 3).

Example: X(trefoil) = L(3,1).

We use the Montesinos trick to obtain the correspondence between double branched
coverings of S3 and surgeries along a link. In particular, we study the corre-
spondence between the class of links Ly and the class of manifolds {Y(7 ;) :
(T, 0,w) is an aternatingly weighted tree}.

(3) We give another inductive definition of Lg—

Brm*
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FIGURE 7
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FIGURE 10

Definition 3.2. Let Dy be an alternating link diagram. Let B be an embedded
disk in R2.

B is 1-reducible for Dy,
point ¢ and ¢ looks as in Figure 3.2.

B is 2-reducible for Dp, (}:e)f OB intersects with Dy at just two crossing
points ¢; and co and they look as in Figure 3.2.

B is reducible for Dy, (%:e)f B is 1- or 2-reducible for Dy,.

(il:e)f OB intersects with Dy, at just one crossing

Definition 3.3. A class D,.q is defined as follows:
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FIGURE 12. 1-move and 2-move

Dy, : alternating link diagram
Dy, € D,..q if Dy, satisfies the one of the following two properties:
e Dy is a disjoint union of finite number of the unknot diagrams.
e J a sequence of embedded disks By,---, B, and 3 1- or 2-moves s.t.
— Bj is reducible for Dy,
— By is reducible for Dy (By),
— Bjs is reducible for Dy, (B1, Bs) = Dy, (B1)(B2),

— B, is reducible for Dy (B1, -+ ,Bn-1),
— Dp(By, -+ ,B,) is a disjoint union of finite number of the unknot
diagrams.
Ered = {L7 iDp € Dred}~
We say such diagrams and links B-reducible.

Example : The trefoil knot is B-reducible; i.e. (trefoil) € L, eq

FIGURE 13

Sketch of proof:

Stepl Em =Lreq = {L, dDy, € D'red}~

Step2 VL € Lyeq, T, 0,w) s.t B(L) = Y(7,5.)-
Conversely, V(T,0,w), 3L € Lyeq 8.t Y(1,6.0) = X(L).
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(We can prove this statements inductively by using
the Montesinos trick.)

Step3 V(T,0,w) , Y(rw) is a strong L-space and
a graph manifold. (Proposition 3.1)

{2(L): the double branched covering 300 . link L/ }
of S3 branched along link L} {5%(L'): a surgery along a lin

{X(L)|LELz—=, i.e. alternating and {Y(1,0,u)|(T,0,w)is an alternatingly-

Brm?
Brm¢L} Step2 weighted tree}
Il stepl step3 | Proposition 1
{3(L)|L € Lred, i-e. DL € Dyey}. Y(7,0,w) are strong L-spaces.
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