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Abstract. L 空間とは、Heegaard-Floer ホモロジーが階数 N をもつ自由加群と
なるようなホモロジー３球面のことである。ここで N は一次ホモロジー群の位数。
この講演では、特別な場合として境界写像が消えているような L 空間について考え
る。その具体例を構成し、それらを交代的な絡み目で分岐する二重分岐被覆の観点か
ら特徴付けする。その際に絡み目に対して定まるある種の順序を用いる。

1. Heegaard Floer homology and strong L-spaces

Let Y be a closed oriented three manifold. Ozsváth and Szabó introduced
the Heegaard Floer homology HF (Y ) in [7]. This is a topological invariant of
closed oriented three manifolds.

Now, we recall a Heegaard decomposition (Σ, α, β) of a closed oriented three
manifold Y shortly. It consists of three data as follows.

Uα, Uβ : genus g handlebodies
Σ : a closed oriented genus g-surface
α = {α1, · · · , αg}, β = {β1, · · · , βg} : attaching circles
Then, Y can be represented uniquely by attaching these handlebodies (see Figure

1).
Y = Uα ∪Σ Uβ

(Note that attaching circles are characterized as pairwise disjoint, homologically
linearly independent, simple closed curves on Σ.)

ΣUα Uβ

α1 α2 α3

β1 β2 β3

Figure 1. Heegaard decomposition

We sketch the definition of Heegaard Floer homology of (Σ, α, β). Define

Tα ∩ Tβ := {x = (x1σ(1), x2σ(2), · · · , xgσ(g))|xiσ(i) ∈ αi ∩ βσ(i), σ ∈ Sg},
where Sg is the symmetric group on g letters.

Then, the Heegaard Floer chain complex of (Σ, α, β) is defined by
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ĈF (Y ) = {the Z2-vector space generated by the elements of Tα ∩ Tβ}.
We use the following fact (see [7]).

Fact 1. ∃∂̂ : ĈF (Y ) → ĈF (Y ) : homomorphism s.t. ∂̂ · ∂̂ = 0.

Roughly speaking, the boundary map ∂̂ counts the pseudo holomorphic Whitney
disk. Thus, we can define the Heegaard Floer homology of (Σ, α, β), i.e.,

Ã ĤF (Σ, α, β) = Ker(∂̂)/Im(∂̂)
Actually, this homology is independent of the choice of the Heegaard diagram

representing Y . That is, this becomes a topological invariant for closed three man-
ifolds. We denote it by ĤF (Y ).

Definition 1.1 (L-space, strong L-space). Let Y be a rational homology three-
sphere.

Y is an L-space def⇔ ĤF (Y ) ∼= Z|H1(Y ;Z)|
2 .

Y is a strong L-space def⇔ ∃(Σ, α, β) representing Y s.t.
|Tα ∩ Tβ | = |H1(Y ; Z)|.

Remark. We can define a strong L-space in another way. Y is a strong L-space
⇔ ∃(Σ, α, β) representing Y s.t. the boundary map ∂̂ is the zero map.
We call such a diagram (Σ, α, β) a strong diagram.

The above definitions first appeared in [1].

2. Smoothing order and Main theorem

Let DL be a link diagram of a link L. A smoothing is the following operation.

or

Figure 2. smoothing

Definition 2.1 ([2] and [9]). Let L1 and L2 be alternating links in S3.
DL1 and DL2 : alternating link diagrams of L1 and L2

DL1 ⊆ DL2

def⇔ DL2 contains DL1 as a component
after smoothing some crossing points of DL2 .

L1 ≤ L2
def⇔ ∀ DL2 : a minimal crossing alternating link diagram of L2,

∃ DL1 : a minimal crossing alternating link diagram of L1 s.t.
DL1 ⊆ DL2 .

Note that we can define ≤ for any two links by ignoring alternating conditions
(see [2]).

Example: It is easy to see that (the Hopf link) < (the trefoil knot).
Let us define a class of alternating links by using this smoothing order.

Definition 2.2. LBrm = { an alternating link L in S3 such that Brm � L},
where Brm is the Borromean rings. (We denote the following link diagram of

Borromean rings by Brm too).
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<
Figure 3

Figure 4. The Borromean

Now, let us denote Σ(L) the double branched covering of S3 branched along a link L.

Theorem 2.1 (Usui). Let L be an alternating link in S3. If L satisfies the following
conditions:

• L ∈ LBrm , i.e. Brm � L,
• Σ(L) is a rational homology three sphere,

then Σ(L) is a strong L-space and a graph manifold (or a connected sum of graph-
manifolds).

Note that the following theorem seems stronger than Theorem 2.1.

Theorem 2.2. [3] L :an alternating link in S3

Σ(L) is a rational homology three sphere ⇒ Σ(L) is a strong L-space,

However, we can prove Theorem 2.1 independently and systematically. In this
article, we describe some ideas to prove Theorem 2.1.

3. Ideas of proof

There are three ideas to prove Theorem 1.1.

(1) Generalization : We start from the diagram of lens space.
(2) Transformation : We use the Montesinos trick.
(3) Induction : We replace the definition of LBrm with an inductive difinition

to prove Theorem 2.1 inductively.

(1) First, we review the Heegaard diagrams of lens spaces which are basic examples
of (strong) L-spaces.

Example:
Ã ĈF (L(p, q)) = Zp

2 and |Tα ∩ Tβ | = p = |H1(L(p, q); Z)|.
Ã ĤF (L(p, q)) = Zp

2 and L(p, q) are strong L-spaces.
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x1 x2 x3

p
q--

Figure 5. Lens space L(p, q) and its Heegaard diagram (p =
3, q = 1)

Question. Can we find other strong diagrams in this way? (Are there any other
strong diagrams which are naturally induced from some surgery representations of
three manifolds?)

Definition 3.1. (T, σ, w) : an alternatingly weighted tree def⇔
• T is a tree. Let V (T ) be the set of vertices of T .

• σ : V (T ) → {±1} is a map s.t σ(v1) = −σ(v2) for

v1 v2
e12 .

• w : V (T ) → {0, 1,∞} is a map.

Given an alternatingly weighted tree (T, σ, w), we can define a three manifold
Y(T,σ,w) naturally by performing surgeries along the unknots in S3 (see Figure 3.)

-1
+1

+0

-0

-

+1

-1 +0

-

-0

∞ ∞
(T,σ,w) Y(T,σ,w)

Figure 6

We can take a Heegaard diagram of Y(T,σ,w) naturally (see Figure 3). More-
over, this diagram becomes a strong diagram. (That is, we can prove |Tα ∩ Tβ | =
|H1(Y(T,σ,w); Z)|.)

Proposition 3.1. (T, σ, w) : an alternatingly-weighted tree
If Y(T,σ,w) is QHS, then Y(T,σ,w) is a strong L-space and a graph manifold (or a

connected sum of graphmanifolds).

(2) Next, we describe the Montesinos trick shortly by using an example (see 3,
3 and 3).

Example: Σ(trefoil) = L(3, 1).
We use the Montesinos trick to obtain the correspondence between double branched

coverings of S3 and surgeries along a link. In particular, we study the corre-
spondence between the class of links LBrm and the class of manifolds {Y(T,σ,w) :
(T, σ, w) is an aternatingly weighted tree}.

(3) We give another inductive definition of LBrm.
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Figure 7
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Figure 8

+1 +1

-1

+1

-1

+1

Figure 9
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-1

=
-3

= L(3,1)

Figure 10

Definition 3.2. Let DL be an alternating link diagram. Let B be an embedded
disk in R2.

B is 1-reducible for DL
def⇔ ∂B intersects with DL at just one crossing

point c and c looks as in Figure 3.2.

B is 2-reducible for DL
def⇔ ∂B intersects with DL at just two crossing

points c1 and c2 and they look as in Figure 3.2.

B is reducible for DL
def⇔ B is 1- or 2-reducible for DL.

Definition 3.3. A class Dred is defined as follows:
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Figure 11. 1-reducible and 2-reducible

1-move def⇔

B B

, 2-move def⇔

c1

2c

B B
c1

2c

Figure 12. 1-move and 2-move

DL : alternating link diagram
DL ∈ Dred if DL satisfies the one of the following two properties:

• DL is a disjoint union of finite number of the unknot diagrams.
• ∃ a sequence of embedded disks B1, · · · , Bn and ∃ 1- or 2-moves s.t.

– B1 is reducible for DL,
– B2 is reducible for DL(B1),
– B3 is reducible for DL(B1, B2) = DL(B1)(B2),

...
– Bn is reducible for DL(B1, · · · , Bn−1),
– DL(B1, · · · , Bn) is a disjoint union of finite number of the unknot

diagrams.
Lred = {L;∃DL ∈ Dred}.
We say such diagrams and links B-reducible.

Example : The trefoil knot is B-reducible; i.e. (trefoil) ∈ Lred

2-move

2-move

1-move

c1

c2

c3

Figure 13

Sketch of proof:

Step1 LBrm = Lred = {L;∃DL ∈ Dred}.
Step2 ∀L ∈ Lred, ∃(T, σ, w) s.t Σ(L) = Y(T,σ,w).

Conversely, ∀(T, σ, w), ∃L ∈ Lred s.t Y(T,σ,w) = Σ(L).
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(We can prove this statements inductively by using
the Montesinos trick.)

Step3 ∀(T, σ, w) , Y(T,σ,w) is a strong L-space and
a graph manifold. (Proposition 3.1)

{Σ(L): the double branched covering
of S3 branched along link L} ←→ {S3(L′): a surgery along a link L′ }⋃ ⋃

{Σ(L)|L∈LBrm, i.e. alternating and

BrmˆL} step2←−→
{Y(T,σ,w)|(T,σ,w)is an alternatingly-

weighted tree}

q step1 step3 ⇓ Proposition 1

{Σ(L)|L ∈ Lred, i.e. ∃DL ∈ Dred}. Y(T,σ,w) are strong L-spaces.
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