Simple ribbon fusions for links

岸本 健吾 (大阪工業大学)

(渋谷哲夫氏(大阪工業大学)・塚本達也氏(大阪工業大学)との共同研究)

1 はじめに

本報告において, [1, 2] で定義された絡み目の局所変形である simple ribbon move の拡張となる simple ribbon fusion を導入する.

絡み目 ℓ から 1 回の simple ribbon fusion で得られた絡み目を L とするとき, $g(L) \geq g(\ell)$ が成り立ち、特に等号成立の必要十分条件は ℓ と L が同値な絡み目であることを示す.

また simple ribbon fusion に付随する attendant link を用いることによって、自明な結び目から 1 回の simple ribbon fusion で得られた結び目が prime であるための十分条件を与える.

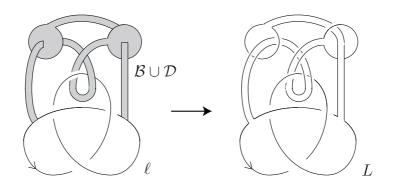
2 Simple ribbon fusions for links

simple ribbon fusion とは S^3 内の (向き付けられた) 絡み目 ℓ に対して定義された以下のような操作である.

定義 2.1. \mathcal{O} (= \mathcal{O}_m) を自明な絡み目, \mathcal{D} (= $\cup_{i=1}^m D_i$) を $\partial \mathcal{D} = \mathcal{O}$, $\mathcal{D} \cap \ell = \emptyset$ をみたす互いに交わらない non-singular disks, \mathcal{B} (= $\cup_{i=1}^m B_i$) を互いに交わらない, $\ell \succeq \mathcal{O}$ の bands of fusion で以下をみたすとする.

- (1) $B_i \cap \ell = \{ \text{an arc of } \ell \}, B_i \cap \mathcal{O} = \{ \text{an arc of } O_i \}.$
- (2) 各i ($1 \le i \le m$) に対して、以下をみたすj が存在する.
 - (i) $\operatorname{int} D_i \cap \mathcal{B} = \operatorname{int} D_i \cap B_j = \{ \text{an arc of ribbon type} \},$
 - (ii) $\operatorname{int} \mathcal{D} \cap B_i = \operatorname{int} D_j \cap B_i = \{ \text{an arc of ribbon type} \}.$

このとき、絡み目 L (= $\ell \oplus \partial(\mathcal{B} \cup \mathcal{D})$) は ℓ から $\mathcal{B} \cup \mathcal{D}$ に関する simple ribbon fusion で得られた、という. ここで、 \oplus は homological addition を意味する.



☑ 1: A simple ribbon fusion

n 成分絡み目 L に対して、種数 g(L) を以下のように定める.

$$g(L) = \min \left\{ rac{2 - \chi(F) - n}{2} \; \middle| \; F \; : \; L$$
 の連結なザイフェルト曲面 $ight\}$

ただし, $\chi(F)$ は F のオイラー標数である.

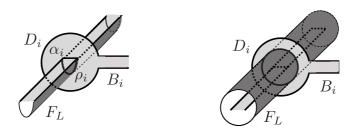
定理 2.2. L を絡み目 ℓ から 1 回の simple ribbon fusion で得られた絡み目とする. このとき $g(L) \geq g(\ell)$ が成り立つ. 特に等号成立の必要十分条件は ℓ と L が同値な絡み目であることである.

この定理を示すために次の補題を用意する.

補題 2.3. 以下の条件をみたす L の連結なザイフェルト曲面 F_L が存在する.

- F_L の種数が g(L) である,
- $\operatorname{int} F_L \cap \mathcal{B} = \emptyset$,
- $F_L \cap \text{int} D_i = \{ \text{an arc } \rho_i \text{ and simple loops} \}.$

ただし ρ_i は $\partial \rho_i = \partial \alpha_i$ をみたす arc とし、各 loop は図 2 のように $\alpha_i \cup \rho_i$ を含む.ここで α_i は $\alpha_i = \operatorname{int} D_i \cap \mathcal{B}$ である arc とする.



[定理 2.2 の証明の概略]

 F_L を補題 2.3 の条件をみたす L のザイフェルト曲面とする. F_L を図 3 のように, $F_L\cap \mathrm{int}D_i$ の arc を cut して元の $B_i\cup D_i$ に沿って 1 枚の disk を張り, また各 loop を cut して 2 枚の disk を張る. この操作を全ての $F_L\cap \mathrm{int}\mathcal{D}$ の連結成分に行うことによって新しい曲面 F を得ることができる. この曲面 F は ℓ のザイフェルト曲面 F_ℓ といくつかの閉曲面の和集合で

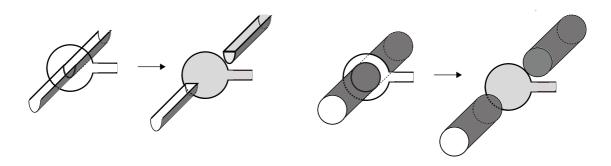


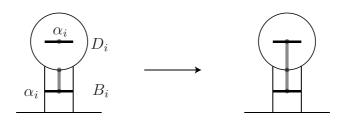
図 3:

表されている。このとき, F_L と F_ℓ のオイラー標数の差を計算することで, $\chi(F_L) \leq \chi(F_\ell)$ となることが分かる.特に等号が成立する必要十分条件が,任意の i に対して, $F_L \cap \mathrm{int} D_i$ の各 arc を cut することで曲面は非連結となり,さらにこの曲面の $\partial D_i - \partial B_i$ を含む連結成分が disk となることである.このことから ℓ と L が同値な絡み目であることが導かれる.

3 An attendant link

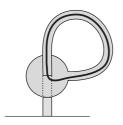
次に simple ribbon fusion の性質を調べるために, [1] で定義された attendant link を以下のように拡張する. L を絡み目 ℓ から $\mathcal{B} \cup \mathcal{D}$ に関する simple ribbon fusion で得られた絡み目とする.

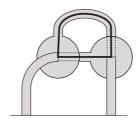
各 band B_i の core をとり、各 disk D_i 上の core の 2 端点を図 4 のように自然につなぐことによって得られる絡み目 \mathcal{L} を $\mathcal{B} \cup \mathcal{D}$ に関する attendant link という.



 $\boxtimes 4$: $B_i \cup D_i \mathcal{O}$ pre-image

 \mathcal{L} の各成分は図 5 のような loop を埋め込んだものとなっている.





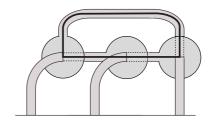


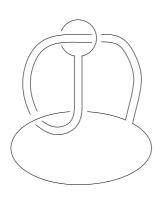
図 5:

特に自明、または prime な結び目に対する simple ribbon fusion について、attendant link の性質を通して、得られる結び目が prime であるための十分条件を得た. 本報告では特に、自明な結び目のときの以下の定理を紹介する.

定理 3.1. k を自明な結び目とし, K を k から 1 回の simple ribbon fusion で得られた非自明な結び目とする.

- (1) \mathcal{L} が結び目ならば, K は prime または square knot である. とくに K が square knot となるのは, \mathcal{L} が trivial かつ $\#(\mathcal{D}) = 1$ or 2 であるときのみである.
 - (2) \mathcal{L} が非分離的絡み目ならば K は prime である.

注意 3.2. 実際に square knot は, 自明な結び目から図 6 のような simple ribbon fusion で得られる.



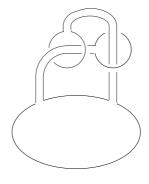


図 6: The square knot

例 3.3. K を図 7 の結び目とする. このとき $\mathcal L$ が Hopf link であることから, 定理 3.1 を用いて, K が prime であることが分かる.

さらに attendant link \mathcal{L} が元の結び目 k に対してどのような位置にあるか、という情報も含めることで次の定理を示した。

定理 3.4. k を自明な結び目とし, K を k から 1 回の simple ribbon fusion で得られた結び目とする. もし $k \cup \mathcal{L}$ が prime であるならば, K は prime または square knot である.

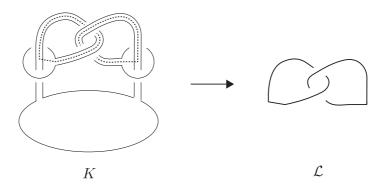


図 7:

例 3.5. 樹下・寺坂結び目 $K(\boxtimes 8$ の結び目) は自明な結び目 k から 1 回の simple ribbon fusion で得られ、さらにその attendant link $\mathcal L$ との和 $k \cup \mathcal L$ は Whitehead link となっている。 定理 3.4 を用いることで、樹下・寺坂結び目が素(したがって非自明) な結び目であることがわかる.

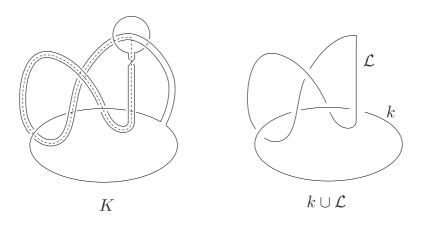


図 8: 樹下・寺坂結び目

参考文献

- [1] K. Kobayashi, T. Shibuya and T. Tsukamoto, Simple ribbon moves for links, to appear in Osaka J. Math.
- [2] T. Shibuya and T. Tsukamoto, Simple ribbon moves and primeness of knots, preprint.