Link-universal subsets of \mathbb{R}^3

HAYATO HOSHIHARA

January 15, 2012

ABSTRACT

We show that every link has a polygonal representative all of whose vertices are contained in $\{0,1\} \times \{0,1\} \times \mathbb{N}$.

1 Link-universal subsets

First, we define the concepts "link-universal subsets" and "complete bipartite graph supporting subsets" in order to state our results.

Definition 1.

A subset $A \subseteq \mathbb{R}^3$ is said to be *link-universal* if for any link L, there exists a polygonal link L' such that L' is ambient isotopic to L and $V(L') \subseteq A$. Here V(L') is the set of the vertices of L'. Clearly the property link-universal is invariant under affine transformations of \mathbb{R}^3 .

Definition 2.

A subset $A \subseteq \mathbb{R}^3$ is said to be *complete bipartite graph supporting(CBGS)* if for any $m, n \in \mathbb{N}$, there exists a linear embedding $f : K_{m,n} \to \mathbb{R}^3$ such that $f(V(K_{m,n})) \subseteq A$. Here $K_{m,n}$ is the complete bipertite graph with a bipartition $V(K_{m,n}) = X \perp Y$ of the vertices with |X| = m, |Y| = n.

Proposition 1.

If A is CBGS, A is link-universal.

This proposition follows from a theorem of Miki Shimabara [4].

Main theorem.

The set $\{0,1\} \times \{0,1\} \times \mathbb{N}$ is link-universal.

A proof using a universal template in [5] will appear in [2].

Remark.

Let B be a set containing exactly three points in \mathbb{R}^2 . Then, $B \times \mathbb{N}$ is not linkuniversal. Because $B \times \mathbb{N}$ is contained in an unknotted open annulus in \mathbb{R}^3 .

2 Height of links

Definition 3.

Let L be a link. Then, h(L) is the smallest n such that there exists a polygonal link L' that is ambient isotopic to L and $V(L') \subseteq \{0,1\} \times \{0,1\} \times \{0,\cdots,n\}$. Then, h(L) is a link invariant. Links of h(L) = 0, 1 have been completely determined, but links of $h(L) = 2, 3, \cdots$ have not yet.

Links of h(L) = 0, 1, 2 are shown in the figures below.

The link of h(L) = 0

Figure 1: A trivial knot

The link of h(L) = 1

Figure 2: A trivial 2-component link

The links of h(L) = 2

Figure 3: A trivial 3-component link

Figure 4: A trivial 4-component link

Figure 5: A Hopf link

Figure 6: A split union of a Hopf link and a trivial knot

Figure 7: A split union of a Hopf link and two trivial knots

Figure 8: A trefoil

Figure 9: A split union of a trefoil and a trivial knot

Figure 10: A figure-eight knot

Figure 11: A (4, 2)-torus knot

Question.

The set of links with h(L) = 2 has not been completely determined yet. Is that all of those listed above?

References

- [1] C. Adams, B. Brennan, D. Greilsheimer and A. Woo: Stick numbers and composition of knots and links. J. Knot Theory Ramifications 6 (1997), 149-161.
- [2] H.Hoshihara: Link-universal subsets of \mathbb{R}^3 , in preparation.
- [3] G. T. Jin: Polygon indices and superbridge indices of torus knots and links. J. Knot Theory Ramifications 6 (1997), 281-289.
- [4] M. S. Shimabara: Topological Ramsey theorem for complete bipartite graphs, J. Combin. Theory Ser. B 62 (1994) 164-179.
- [5] R.Ghrist: Branched two-manifolds supporting all links. Topology 36 (1997), 423-448.