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1. Introduction

A word will be a sequence of symbols, called letters, belonging to a given set A,
called alphabet. Turaev developed the theory of words based on the analogy with
curves on the plane, knots in the 3-sphere, virtual knot, etc. in [6, 7, 8, 9].

A Gauss word is a sequence of letters with the condition that any letter appearing
in the sequence does so exactly twice. A Gauss word can be obtained from an
oriented virtual knot diagram introduced by Kauffman in [3]. Given a diagram,
label the real crossings and pick a base point on the curve somewhere away from
any of the real crossings. Starting from the base point, we follow the curve and
read off the labels of the crossings as we pass through them. When we return to
the base point, we will have a sequence of letters in which each label of a real
crossing appears exactly twice. Thus this sequence is a Gauss word. It is natural
to introduce combinatorial moves on Gauss words to generate equivalence relation,
which we call homotopy, based on Reidemeister moves on a knot diagram.

We then assign to each crossing some data that it is under or over and so on.
This leads us to the notion of nanoword by Turaev in [9]. By introducing refined
combinatorial moves on nanowords, the notion of homotopy can be refined also.
From this viewpoint, homotopy of Gauss words is the simplest kind of nanoword
homotopy. In fact, homotopic nanowords in any refinement are homotopic as Gauss
words.

The theory of nanowords can be naturally generalized to the theory of nanophrases
as the knot theory does to the link theory. The purpose of this paper is to develop
weaker homotopy theory on nanophrases, called M -homotopy, which is an analogue
of Milnor’s link homotopy [4, 5]. By a link homotopy we mean a deformotion of
one link onto another, during which each component of the link is allowed to cross
itself, but no two components are allowed to intersect. Milnor introduced an in-
variant under link homotopy called µ̄ in [4, 5]. We introduce a self crossing move
on nanophrases and the associated M -homotopy allowing self crossings. The main
result stated in Theorem 3.1 is to define an M -homotopy invariant of nanophrases
corresponding to virtual links as an extension of Milnor’s µ̄ invariant.

2. Nanowords and nanophrases

In this section, following Turaev [6, 7, 8, 9], we review formal definitions of words,
phrases and so on.

2.1. Words and phrases. An alphabet is a finite set and its element is called a
letter. For any positive integer m, let m̂ denote the set {1, 2, . . . ,m}. A word on
an alphabet A of length m is a map

w : m̂→ A.
Informally, we can think of a word w on A as a finite sequence of letters in A and
we will usually write words in this way. For example, ABA is a word of length 3 on
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{A,B,C}, where 1 is mapped to A, 2 to B and 3 to A. By convention, the empty
word of length 0 on any alphabet is written by ∅.

An n-component phrase on an alphabet A is a sequence of n words on A. We
write phrases as a sequence of words, separated by ‘|’. For example, A|BCA|CD is a
3-component phrase on {A,B,C,D}. There is a unique phrase with 0-components
which we denote by ∅P . In this paper, we will regard words as 1-component phrases.

2.2. Nanowords and nanophrases. Let α be a finite set. An α-alphabet is an
alphabet A together with an associated map from A to α. This map is called a
projection. The image of any A ∈ A in α will be denoted by |A|. An isomorphism
of α-alphabets A1 and A2 is a bijection f from A1 to A2 such that |f(A)| is equal
to |A| for any letter A in A1.

A Gauss word on an alphabet A is a word on A such that every letter in A
appears exactly twice. Similarly, a Gauss phrase on A is a phrase on A such that
the concatenation of the words appearing in the phrase is a Gauss word on A. By
definition, a 1-component Gauss phrase is a Gauss word.

A nanowrod over α is a pair (A, w) where A is an α-alphabet and w is a Gauss
word on A. An n-component nanophrase over α is a pair (A, p) where A is an
α-alphabet and p is an n-component Gauss phrase on A.

Two nanophrases over α, (A1, p1) and (A2, p2), are isomorphic if there exists a
bijection f from A1 to A2 such that f applied letterwise to the ith component of
p1 gives the ith component of p2 for all i.

Rather than writing (A, p), we will simply use p to indicate a nanophrase. When
we write a nanophrase in this way, we do not forget the set A of letters and the
projection : A → α.

2.3. Equivalence relations on nanophrases. Fix α and then let τ be an in-
volution on α (that is, τ(τ(a)) is equal to a for all a ∈ α). Let S be a subset of
α× α× α. We call the triple (α, τ, S) a homotopy data.

Fixing a homotopy data (α, τ, S), we define three homotopy moves on nanophrases
over α as follows. In the moves on nanophrases, the lower cases x, y, z and t rep-
resent arbitrary sequences of letters, possibly including one or more ‘|’, so that the
phrase on each side of the move is a nanophrase. The moves are

move H1: for any |A|,
(A, xAAy)←→ (A− {A}, xy)

move H2: if τ(|A|) = |B|,
(A, xAByBAz)←→ (A− {A,B}, xyz)

move H3: if (|A|, |B|, |C|) ∈ S,
(A, xAByACzBCt)←→ (A, xBAyCAzCBt).

Figure 1. H1 Figure 2. H2 Figure 3. H3

The homotopy is an equivalence relation on nanophrases over α generated by
isomorphisms and three homotopy moves. The homotopy depends on the choice
of the homotopy data (α, τ, S), so different choices of homotopy data give different
equivalence relations. As none of the moves add or remove components, the number
of components of a nanophrase is an invariant under any kind of homotopy.
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In [7], Turaev defined a shift move on nanophrases. Let ν be an involution on
α which is independent of τ . Let p be an n-component nanophrase over α. A shift
move on the ith component of p is a move which gives a new nanophrase p′ as
follows. If the ith component of p is empty or contains a single letter, p′ is p. If
not, the ith component of p has the form Ax. Then the ith component of p′ is
xA and for all j not equal to i, the jth component of p′ is the same as the jth
component of p. Furthermore, if we write |A|p for |A| in p and |A|p′ for |A| in p′,
then |A|p′ equals ν(|A|p) when x contains the letter A and otherwise, |A|p′ equals
|A|p.

We call the equivalence relation generated by isomorphisms, homotopy moves
and shift moves also a homotopy of nanophrases over α. We call the first homotopy
without shift moves an open homotopy and the second homotopy simply a homotopy.
The homotopy depends on the triple (α, τ, S) and ν.

Let αv be the set {a+, a−, b+, b−} and τv the involution on αv which sends a+
to b− and a− to b+. Let Sv be the set

Sv =


(a+, a+, a+), (a+, a+, a−), (a+, a−, a−),
(a−, a−, a−), (a−, a−, a+), (a−, a+, a+),
(b+, b+, b+), (b+, b+, b−), (b+, b−, b−),
(b−, b−, b−), (b−, b−, b+), (b−, b+, b+)

 .

Let νv be the involution on αv where a+ is mapped to b+ and a− to b−.

In [7], Turaev proved

Theorem 2.1 (Turaev [7]). Under the homotopy defined by (αv, τv, Sv) and νv,
the set of homotopy classes of nanophrases over αv is in bijective correspondence
with ordered virtual links (namely, virtual links where the components are ordered
and the equivalence of ordered virtual links respects the order).

3. µ̄ invariants of nanophrases

In this section, we introduce a self crossing move on nanophrases and a new
weak homotopy, which we call the M -homotopy, by allowing self crossing moves.
Consider the set of equivalence classes of nanophrases corresponding to ordered
virtual links, that is equivalence classes of nanophrases defined by (αv, τv, Sv) and
νv. We define a M -homotopy invariant of nanophrases corresponding to ordered
virtual links. This invariant is an extension of µ̄ invariants introduced by Milnor in
[4, 5].

3.1. Self crossing and M-homotopy. Let (α, τ, S) be any homotopy data and
ν an involution on α independent of τ . We introduce the self crossing move on
nanophrases over α. Let σ be an involution on α which is independent of τ and
ν. Let p be an n-component nanophrase over α. A self crossing move on the kth
component of p is a move which gives a new nanophrase p′ as follows. If there is a
letter A in A which appears exactly twice in the kth component of p, then the kth
component of p has the form xAyAz. Then the kth component of p′ also has the
form xAyAz. Furthermore, writing |A|p for |A| in p and |A|p′ for |A| in p′, we have
the identity |A|p′ = σ(|A|p).

We define the open M -homotopy to be the equivalence relation on nanophrases
over α generated by isomorphisms, three homotopy moves with respect to (α, τ, S)
and self crossing moves with respect to σ. We also define the M -homotopy to be
the equivalence relation of nanophrases over α generated by isomorphisms, three
homotopy moves with respect to (α, τ, S), self crossing moves with respect to σ and
shift moves with respect to ν.
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3.2. Definition of µ̄. From now on, we work only on the homotopy defined by
(αv, τv, Sv), νv and σv which sends a+ to a− and b+ to b−.

Let (A, p) be an n-component nanophrase whose Gauss phrase p is represented by
w1|w2| · · · |wn. We will write p for (A, p) for simplicity. Let wi be Ai1Ai2 · · ·Aimi ,
where Aij ’s are letters in A. To each wi, we define a word on A ∪A−1 by

wε
i = Aεi1

i1 Aεi2
i2 · · ·A

εimi
imi

,

where εij is determined as follows. Since p is a nanophrase, any letter appears
exactly twice in a Gauss phrase w1|w2| · · · |wn. Let A denote the letter represented
by Aij . Then there exist integers k and l ((k, l) ̸= (i, j)) such that Akl represents
A. In other words, the other A appears as the lth letter on the kth component. If
i < k and |A| = b+ or i > k and |A| = a+, then εij = 1. If i < k and |A| = a−
or i > k and |A| = b−, then εij = −1. Otherwise, εij = 0. Namely, if the letter
A appears exactly once in the ith component, and if Aij appears earlier (or latter)
than the other A and |A| = b+(or a+), then εij is 1. If A appears exactly once
in the ith component, and if Aij appears earlier (or latter) than the other A and
|A| = a−(or b−), then εij is −1. For other cases, let εij be zero. In the following,

we use the convention that A0 = ∅ and (A1A2 · · ·An)
−1

= A−1
n A−1

n−1 · · ·A
−1
1 . We

note that AA−1 ̸= ∅.
Let L denote the set of words on A ∪ A−1. Then we define a sequence of maps

ρq (q = 2, 3, · · · ) from L to itself by induction on q.

ρ2(A±
ij) = A±

ij

ρq(A±
ij) = ρq−1(x−1

ij )A±
ijρ

q−1(xij), q ≥ 3

ρq(∅) = ∅ for all q ≥ 2,

where

xij = Aεk1

k1 Aεk2

k2 · · ·A
εkl

kl .

Here, k and l are derived from i and j as in the above. We naturally extend ρq to
L. We will concern exclusively with ρq(wε

i ).
Recall that p = w1|w2| · · · |wn is an n-component nanophrase. We call the index

i of a component wi the order of wi. Let M denote a finite set {a1, . . . , an}. Let
M denote the set of words on M ∪M−1. Using a nanophrase property of p, we
define a map η from L toM as follows. For any letter A in A, let η(A) be ak and
η(A−1) a−1

k , where k is determined by the following rule. If |A| = b+ or a−, then
k is the order of the component in p in which the second A occurs, and if |A| = a+
or b−, then k is the order of the component in p in which the first A occurs. To
see what k is for a letter in wi, let us recall the definition of wε

i . The letter A in
wi survives in wε

i only when either |A| = b+ or a− and the other A appears in
latter component, or |A| = a+ or b− and the other appears in former component.
Thus, if A is represented by Aij and εij ̸= 0, then k is the number appeared in the
definition of εij , namely, the order of the component in which the other A occurs.

We define a map φ fromM to Z[[κ1, κ2, . . . , κn]] by

φ(ah) = 1 + κh,

φ(a−1
h ) = 1− κh + κ2

h − κ3
h + · · · ,

where Z[[κ1, κ2, . . . , κn]] is the ring of formal power series on non-commuting vari-
ables κ1, κ2, . . . , κn.

We consider φ ◦ η(ρq(wε
i )) in Z[[κ1, κ2, . . . , κn]]. Since φ ◦ η(ρq(wε

i )) agrees with
φ ◦ η(ρr(wε

i )) for any r ≥ q up to degree q, the coefficient of a term κc1κc2 . . . κcu

in φ ◦ η(ρq(wε
i )) converges as q →∞. Thus we have a well-defined expansion,

lim
q→∞

φ ◦ η(ρq(wε
i )) = 1 +

∑
µ(p; c1, c2, . . . , cu, i)κc1κc2 · · ·κcu .
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where c1, c2, . . . , cu, i is a sequence of integers between 1 and n. We here note that
the integers in the sequence are not necessarily mutually different.

Let ∆(p; c1, c2, . . . , cu, i) denote the greatest common divisor of µ(p; d1, d2, . . . , dt),
where the sequence d1, d2, . . . , dt (2 ≤ t ≤ u) ranges over all sequences obtained
by eliminating at least one of c1, c2, . . . , cu, i, and permuting the remaining indices
cyclically. We also define ∆(p; c1, i) = 0. Let µ̄(p; c1, c2, . . . , cu, i) denote the residue
class of µ(p; c1, c2, . . . , cu, i) modulo ∆(p; c1, c2, . . . , cu, i).

The main theorem of this paper is as follows.

Theorem 3.1. Let p be an n-component nanophrase. Let c1, c2, . . . , cu, i be a
sequence of integers between 1 and n such that c1, c2, . . . , cu, i are pairwise distinct.
Then µ̄(p; c1, c2, . . . , cu, i) is an invariant under M -homotopy of nanophrases with
respect to (αv, τv, Sv), νv and σv.

Example 3.2. Let p = ABCD|ECFA|DFBE where |A| = |E| = b+, |B| = b−,
|C| = |F | = a− and |D| = a+. This corresponds to the Borromean rings illustrated
in Fig. 4. Then since wε

1 = AC−1,

ρ2(wε
1) = AC−1

ρ3(wε
1) = FE−1AEF−1E−1C−1E.

Thus we have

η(ρ2(wε
1)) = a2a

−1
2

η(ρ3(wε
1)) = a3a

−1
3 a2a3a

−1
3 a−1

3 a−1
2 a3.

Therefore µ(2, 1) = µ(3, 1) = 0 and µ(2, 3, 1) = −1. Similarly µ(1, 2) = µ(1, 3) =
µ(2, 3) = µ(3, 2) = 0 and so ∆(2, 3, 1) = 0. Hence µ̄(2, 3, 1) ≡ −1 (mod 0).

Figure 4
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