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Definition 1 (HOMFLY polynomial)

There is a function P : {oriented links in S3} → Z[v±1, z±1]
defined uniquely by　
( i ) P(unknot) = 1,　
( ii ) v−1PD+ − vPD− = zPD0 , where D+, D−, D0 are an oriented
skein triple.

D+ D− D0

Definition 2 (top of the HOMFLY polynomial)

TopD(v) = the coefficient of zc(D)−s(D)+1 in the HOMFLY
polynomial of D.

嘉藤桂樹 Property of the interior polynomial



Computing the HOMFLY polynomial using the combinatorics
Properties of the interior polynomial

HOMFLY polynomial
Interior polynomial
Root polytope and Ehrhart polynomial
Signed version of interior polynomial and Ehrhart polynomial

Interior polynomial

H = (V ,E ) : hypergraph.

IH (x) : interior polynomial (T. Kálmán 2013).

It generalizes the evaluation x |V |−1TG (1/x , 1) of the classical
Tutte polynomial TG (x , y) of the graph G = (V ,E ).

We regard the interior polynomial as an invariant of bipartite
graph G = (V ,E , E) with color classes E and V

(T. Kálmán and A. Postnikov 2016).

Example

IG (x) = 1x0 + 3x1 + 3x2.
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For any plane bipartite graph G , Let LG be the alternating link
obtained from G by replacing each edge by a crossing.

Obviously, LG is a special alternating diagram.

Theorem 3 (T. Kálmán, H. Murakami and A. Postnikov, 2016)

G = (V ,E , E) : a connected plane bipartite graph.

TopLG (v) = v |E|−(|V |+|E |)+1IG (v
2),

where IG (x) is the interior polynomial of G .
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G = (V ,E , E) : a bipartite graph

Definition 4

For v ∈ V and e ∈ E , let v and e denote the standard generators
of RV ⊕ RE . Then the root polytope of G is defined to be

QG = Conv{v+ e | ve is an edge of G}.

Example

d = dimQG = |V |+ |E | − 2.
嘉藤桂樹 Property of the interior polynomial



Computing the HOMFLY polynomial using the combinatorics
Properties of the interior polynomial

HOMFLY polynomial
Interior polynomial
Root polytope and Ehrhart polynomial
Signed version of interior polynomial and Ehrhart polynomial

QG : the root polytope of a bipartite graph G .

Definition 5 (Ehrhart polynoial)

εQG
(s) := |s · QG ∩ ZV ⊕ ZE |.

Definition 6 (Ehrhart series)

EhrQG
(x) =

∑
s∈Z≥0

εQG
(s)x s .

Theorem 7 (T. Kálmán and A. Postnikov, 2016)

G = (V ,E , E) : connected bipartite graph.
IG : the interior polynomial of G .

IG (x)

(1− x)d+1
= EhrQG

(x).
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G = (V ,E , E− ∪ E+) : a connected signed bipartite graph.

Definition 8 (signed interior polynomial)

I+G (x) =
∑
S⊆E−

(−1)|S|IG\S (x) ,

where G \ S is bipartite graph obtained from G by deleting ∀e ∈ S
and by forgetting sign.

Example

I+G = 1x3.
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For any signed plane bipartite graph G , Let LG be the oriented link
obtained from G by replacing each edge to a crossing.

positive edge negative edge

Obviously, LG is a special diagram.

Theorem 9 (K.)

G = (V ,E , E+ ∪ E−) : plane signed bipartite graph.

TopLG (v) = v |E+|−|E−|−(|V |+|E |)+1I+G
(
v2

)
,

where I+G (x) is the interior polynomial of G .
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Example

I+G = 1x3.

PLG (v , z) = +1v3z3

+4v3z −1v5z
−1vz−1 +3v3z−1 −2v5z−1.
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Proposition 10 (Murasugi and Pryzytycki, 1989)

D1 ∗ D2 : a link diagram obtained by Murasugi-sum. Then

TopD1∗D2
(v) = TopD1

(v) TopD2
(v).

Proposition 11

G1 ∗ G2 : a signed bipartite graph obtained by identifying one
vertex. Then

I+G1∗G2
(x) = I+G1

(x)I+G2
(x).
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Theorem 12 (K.)

D : oriented link diagram.
G = (V ,E , E+ ∪ E−) : the Seifert graph of D. Then

TopD(v) = v |E+|−|E−|−(|V |+|E |)+1I+G
(
v2

)
.
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G = (V ,E , E+ ∪ E−) : a signed bipartite graph.

Definition 13 (the signed Ehrhart series)

Ehr+G (x) =
∑

S⊆E−(G)

(−1)|S| EhrQG\S (x) .

Theorem 14 (K.)

I+G (x) : the signed interior polynomial of G . Then

I+G (x)

(1− x)d+1
= Ehr+G (x).
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Theorem 15

L∗ : mirror image of L. Then

PL∗(v , z) = PL(−v−1, z).

Example

L L∗
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Theorem 16 (Ehrhart reciprocity)

P : rational convex polytope

EhrP(1/x) = (−1)dimP+1 EhrintP(x).

G = (V ,E , E = E+) : bipartite graph with only positive edge.
QG : the root polytope of G (forgetting sign).

EhrQG
(1/x) = (−1)d+1 EhrintQG

(x).

Lemma 17

(−1)d EhrintQG
(x) =

∑
S⊂E

(−1)|S|−1 EhrQS (x),

where QS is the root polytope of the bipartite graph whose edges
consist of S.
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Therefore,
EhrQG

(1/x) =
∑
S⊂E

(−1)|S| EhrQS (x).

By definition of the signed Ehrhart series,

(−1)|E| EhrQG
(1/x) =

∑
S⊂E

(−1)|E|−|S| EhrQS (x)

= Ehr+Q−G
(x),

where Q−G is the root polytope of the bipartite graph obtained
from G by changing sign.
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By using Theorem 14,

(−1)|E|
I+G (1/x)

(1− 1/x)d+1
=

I+−G (x)

(1− x)d+1
.

We get
(−1)|E|+d+1xd+1I+G (1/x) = I+−G (x).

And by using induction on |E−|, we prove the following theorem.

Theorem 18 (K.)

G = (V ,E , E+ ∪ E−) : signed bipartite graph.
−G : the signed bipartite graph obtained from G by changing sign.
Then

(−1)|E+|+|E−|+|E |+|V |−1x |E |+|V |−1I+G (1/x) = I+−G (x).
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Flyping

←→
isotopy

←→
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Mutation

←→

←→
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Theorem 19 (K.)

Flyping and Mutation of bipartite graph doesn’t change the
interior polynomial.

We use the folloeing theorem in the proof of Theorem 19.

Theorem 20 (K.)

G : bipartite graph containning a cycle ϵ1, δ1, ϵ2, δ2, · · · , ϵn, δn

IG (x) =
∑

ϕ̸=S⊂{ϵ1,ϵ2,··· ,ϵn}

(−1)|S|−1IG\S(x).
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Proof of Theorem 19

By induction on the nullity in R.

←→

←→

←→

←→
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