Property of the interior polynomial from the
HOMFLY polynomial
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Definition 1 (HOMFLY polynomial)

There is a function P : {oriented links in S3} — Z[v¥!, z*1]
defined uniquely by

(i) P(unknot) =1,

(i) viiPp, —vPp = zPp,, where D, D_, Dy are an oriented

skein triple.
XA X

D, D_ Do

Definition 2 (top of the HOMFLY polynomial)

Topp(v) = the coefficient of z€(P)==(P)+1 in the HOMFLY
polynomial of D.
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Interior polynomial

e /= (V,E) : hypergraph.
@ /,#(x) : interior polynomial (T. Kdlman 2013).
o It generalizes the evaluation x!VI=1T5(1/x,1) of the classical
Tutte polynomial Tg(x, y) of the graph G = (V, E).
@ We regard the interior polynomial as an invariant of bipartite
graph G = (V, E, &) with color classes E and V
(T. Kélman and A. Postnikov 2016).

Example

Vel

0 2

lg(x) = 1x° + 3x + 3x%.
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For any plane bipartite graph G, Let Lg be the alternating link
obtained from G by replacing each edge by a crossing.

A<

Obviously, L¢ is a special alternating diagram.

Theorem 3 (T. Kdlman, H. Murakami and A. Postnikov, 2016)

G =(V,E,&) : a connected plane bipartite graph.

where Ig(x) is the interior polynomial of G.
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G = (V,E,&) : a bipartite graph

Definition 4

For v € V and e € E, let v and e denote the standard generators
of RY @ RE. Then the root polytope of G is defined to be

Q¢ = Conv{v + e| ve is an edge of G}.

Example
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Q¢ : the root polytope of a bipartite graph G.

Definition 5 (Ehrhart polynoial)

£Qc(s) == |s- Qe NZY & ZF|.
Definition 6 (Ehrhart series)

EthG(X): Z gQG(S)XS'

SEZZO

Theorem 7 (T. Kdlman and A. Postnikov, 2016)

G = (V,E,&) : connected bipartite graph.
Ig : the interior polynomial of G.

Ig(x
(1—GE<)?”+1 = Ehrg,(x).
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G=(V,E,E_UE,) : a connected signed bipartite graph.

Definition 8 (signed interior polynomial)

I1E (x) = Z (-1)¥lg\s (x),

SCE_

where G \ S is bipartite graph obtained from G by deleting Ve € S
and by forgetting sign.

Ig = 1x3.
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Signed version of interior polynomial and Ehrhart polynomial

For any signed plane bipartite graph G, Let Ls be the oriented link
obtained from G by replacing each edge to a crossing.

* K
AN /
positive edge negative edge

Obviously, L¢ is a special diagram.

Theorem 9 (K.)

G = (V,E,EL UE_) : plane signed bipartite graph.
Top, (v) = V|5+|*|5—|*(|V\+|E|)+1/ér (v2) ’

where It (x) is the interior polynomial of G.
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—1vz—

HOMFLY polynomial

Interior polynomial

Root polytope and Ehrhart polynomial

Signed version of interior polynomial and Ehrhart polynomial

Iér =1x3.

+1v323

+4v3z —1v°z
+3v3z71 2Pz 1.
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Proposition 10 (Murasugi and Pryzytycki, 1989)
D; % Dy : a link diagram obtained by Murasugi-sum. Then

Tole*Dz(V) = TOle(V) TopDz(v)‘

Proposition 11

G1 * Gy : a signed bipartite graph obtained by identifying one
vertex. Then
lgl*@(x) = /gl(x)lgz(x).

— ~
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Theorem 12 (K.)

D : oriented link diagram.
G=(V,E,EL UE_) : the Seifert graph of D. Then

Topp(v) = V|5+|—I5—I—(IV\+IEI)+1/ér (V2) )
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G=(V,E,ELUE_) : asigned bipartite graph.

Definition 13 (the signed Ehrhart series)

Ehré(x) = Y. (1P Ehrg, , (x).
SCE_(G)

Theorem 14 (K.)

IZ(x) : the signed interior polynomial of G. Then

ﬂ = Ehr{(x).
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Theorem 15

L* : mirror image of L. Then

PL*(V7Z) = PL(_V_laZ)'

_|_ —
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Theorem 16 (Ehrhart reciprocity)

P : rational convex polytope
Ehrp(1/x) = (—1)3m™ P+ Ehrye p(%).

G =(V,E, & =¢&,) : bipartite graph with only positive edge.
Qg : the root polytope of G (forgetting sign).

Ehrgg(1/x) = (=1)"*" Ehrint o (x)-

(1) Ehrine g (x) = > _ (—1)1¥1"1 Ehrgg(x),
Scé&

where Qs is the root polytope of the bipartite graph whose edges
consist of S.
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Therefore,

Ehrog(1/x) = 3 (~1)% Ehrgy (x).

Scé&
By definition of the signed Ehrhart series,

(~1) Bhrau(1/%) = (-1 Ehrg, ()
Scé&

= Ehrz)_c(x),

where Q_¢ is the root polytope of the bipartite graph obtained
from G by changing sign.

Property of the interior polynomial



Mirror image

Properties of the interior polynomial Flyping and mutation

By using Theorem 14,

1E@/x) 1204

(_1)‘5‘ (1 _ 1/X)d+1 - (1 _ X)d—i—l :

We get
(_1)\5|+d+lxd+1lc+(1/x) _ le(X)'

And by using induction on |E_|, we prove the following theorem.

Theorem 18 (K.)

G=(V,E,EL UE_) : signed bipartite graph.
—G : the signed bipartite graph obtained from G by changing sign.
Then

(_1)\5+\+|57|+\E|+\V|—1X\EI+\V|—1/ér(1/X) = 1T (x).
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Theorem 19 (K.)

Flyping and Mutation of bipartite graph doesn’t change the
interior polynomial.

We use the folloeing theorem in the proof of Theorem 19.
Theorem 20 (K.)

G : bipartite graph containning a cycle €1,01,€2,02, - ,€n,0p

lg(x) = > (1)1 g\ s ().

¢p#SC{e1,€2,+ s€n}
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Proof of Theorem 19

By induction on the nullity in R.
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Proof of Theorem 19

By induction on the nullity in R.
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Proof of Theorem 19

By induction on the nullity in R.
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Proof of Theorem 19

By induction on the nullity in R.

(a0 - (ero
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