Certain right-angled Artin groups in mapping class groups

Takuya Katayama (w/ Erika Kuno)

Hiroshima University

Tokyo Woman's Christian University, December 24, 2017

<u>Plan</u>

- (1) Introduction and statements of results
- (2) Ideas of the proofs
- The existence of embeddings between RAAGs
- \rightarrow Embeddings of RAAGs into MCGs (Main Theorem)
- \rightarrow Embeddings between MCGs (applications)

Right-angled Artin groups

Γ: a finite (simplicial) graph $V(\Gamma) = \{v_1, v_2, \cdots, v_n\}$: the vertex set of Γ $E(\Gamma)$: the edge set of Γ

Definition

The right-angled Artin group (RAAG) $A(\Gamma)$ on Γ is the group given by the following presentation:

$$A(\Gamma) = \langle v_1, v_2, \ldots, v_n \mid [v_i, v_j] = 1 \text{ if } \{v_i, v_j\} \in E(\Gamma) \rangle.$$

 $A(\Gamma_1) \cong A(\Gamma_2) \text{ if and only if } \Gamma_1 \cong \Gamma_2.$ e.g. $A(\bullet \bullet \bullet) \cong F_3$ $A(\bullet \bullet \bullet) \cong \mathbb{Z} * \mathbb{Z}^2$ $A(\bullet \bullet \bullet) \cong \mathbb{Z} \times F_2$ $A(\bullet \bullet) \cong \mathbb{Z}^3$ $\Sigma := \Sigma_{g,p}^{b}$: the orientable surface of genus g with p punctures and b boundary components

The mapping class group of Σ is defined as follows.

$$\operatorname{Mod}(\Sigma) := \operatorname{Homeo}_+(\Sigma, \partial \Sigma)/\mathsf{isotopy}$$

 $B_n := \operatorname{Mod}(\Sigma_{0,p}^1)$ "the braid group on *n* strands" α : an essential simple loop on $\Sigma_{g,p}^b$ The Dehn twist along α :

The curve graphs of surfaces

$$\begin{split} & \Sigma_{g,p}: \text{ the orientable surface of genus } g \text{ with } p \text{ punctures} \\ & \text{The curve graph } \mathcal{C}(\Sigma_{g,p}) \text{ is a graph such that} \\ & \textit{V}(\mathcal{C}(\Sigma_{g,p})) = \{\text{isotopy classes of escc on } \Sigma_{g,p}\} \\ & \text{escc } \alpha, \beta \text{ span an edge iff } \alpha, \beta \text{ can be realized by disjoint curves in} \\ & S_{g,p}. \end{split}$$

Fact (Subgroup generated by two Dehn twists)

Let α and β be non-isotopic escc on $\Sigma_{g,p}$.

- (1) If $i(\alpha, \beta) = 0$, then the Dehn twists T_{α} and T_{β} generate $\mathbb{Z}^2 \cong A(\bullet \bullet)$ in $Mod(\Sigma_{g,p})$.
- (2) If $i(\alpha, \beta) = 1$, then T_{α} and T_{β} generate SL(2, \mathbb{Z}) (when (g, p) = (1, 0) or (1, 1)) or B_3 (otherwise).
- (3) If the minimal intersection number of α and β is ≥ 2 , then T_{α} and T_{β} generate $F_2 \cong A(\bullet \bullet)$ (Ishida, 1996).

Theorem (Crisp-Paris, 2001)
If
$$i(\alpha, \beta) = 1$$
 and $\langle T_{\alpha}, T_{\beta} \rangle \cong B_3$, then T_{α}^2 and T_{β}^2 generate $F_2 \cong A(\bullet \bullet)$ in $Mod(\Sigma_{g,p})$.

Theorem (Koberda, 2012)

Γ: a finite graph, $\chi(\Sigma_{g,p}) < 0$. If $\Gamma \leq C(\Sigma_{g,p})$, then sufficiently high powers of "the Dehn twists $V(\Gamma)$ " generate $A(\Gamma)$ in $Mod(\Sigma_{g,p})$.

Here, a subgraph Λ of a graph Γ is said to be full if $\{u, v\} \in E(\Lambda) \Leftrightarrow \{u, v\} \in E(\Gamma)$ for all $u, v \in V(\Lambda)$. We denote by $\Lambda \leq \Gamma$ if Λ is a full subgraph of Γ .

Motivation

Note: for any finite graph Γ , there is a surface Σ such that $A(\Gamma) \hookrightarrow \operatorname{Mod}(\Sigma)$ by Koberda's theorem.

Problem (Kim–Koberda, 2014)

Decide whether $A(\Gamma)$ is embedded into $Mod(\Sigma_{g,p})$.

Theorem (Birman–Lubotzky–McCarthy, 1983) $A(K_n) \cong \mathbb{Z}^n \hookrightarrow Mod(\Sigma_{g,p})$ if and only if $n \leq 3g - 3 + p$.

Theorem (McCarthy, 1985) $A(K_1 \sqcup K_1) \cong F_2 \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ if and only if $(g, p) \neq (0, \leq 3)$.

Theorem (Koberda, Bering IV–Conant–Gaster, K, 2017) $F_2 \times F_2 \times \cdots \times F_2 \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ if and only if the number of the direct factors F_2 is at most $g + \lfloor \frac{g+p}{2} \rfloor - 1$. P_n : the path graph on *n* vertices P_n The complement graph Γ^c of a graph Γ is the graph such that $V(\Gamma^c) = V(\Gamma)$ and $E(\Gamma^c) = \{\{u, v\} \mid \{u, v\} \notin E(\Gamma)\}.$

Main Theorem (K.–Kuno) $A(P_m^c) \leq Mod(\Sigma_{g,p})$ if and only if *m* satisfies the following inequality.

$$m \leq \begin{cases} 0 & ((g, p) = (0, 0), (0, 1), (0, 2), (0, 3)) \\ 2 & ((g, p) = (0, 4), (1, 0), (1, 1)) \\ p - 1 & (g = 0, p \ge 5) \\ p + 2 & (g = 1, p \ge 2) \\ 2g + p + 1 & (g \ge 2) \end{cases}$$

Some Applications

The homomorphisms $B_{2g+1} \to \operatorname{Mod}(\Sigma_{g,0}^1)$ and $B_{2g+2} \to \operatorname{Mod}(\Sigma_{g,0}^2)$, which map the generators of Artin type to the Dehn twists along a chain of interlocking simple closed curves, are injective by a theorem due to Birman–Hilden.

Case $B_{2g+1} = \langle \sigma_1, \dots, \sigma_{2g} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ [\sigma_i, \sigma_j] = 1 \rangle;$

$$B_{2g+1} \to \operatorname{Mod}(\Sigma^1_{g,0})$$
$$\sigma_i \to T_{\alpha_i}$$

Fact

- $B_{2g+1} \hookrightarrow \operatorname{Mod}(\Sigma^1_{g,0}).$
- $B_{2g+2} \hookrightarrow \operatorname{Mod}(\Sigma^2_{g,0}).$

Theorem (Castel, 2016)

Suppose that $g \ge 0$.

- $B_{2g+1} \hookrightarrow \operatorname{Mod}(\Sigma^1_{g',0})$ implies $g \leq g'$.
- $B_{2g+2} \hookrightarrow \operatorname{Mod}(\Sigma^2_{g',0})$ implies $g \leq g'$.

伺 と く ヨ と く ヨ と

3

We obtain the following result as a corollary of Main Theorem.

Corollary A (K.–Kuno)

Suppose that $g \ge 0$. Then the following hold.

(1) If B_{2g+1} is virtually embedded into $\operatorname{Mod}(\Sigma^1_{g',0})$, then $g \leq g'$.

(2) If B_{2g+2} is virtually embedded into $Mod(\Sigma^2_{g',0})$, then $g \leq g'$.

In the above corollary, we say that a group G is virtually embedded into a group H if there is a finite index subgroup N of G such that $N \leq H$.

Each of (1) and (2) extends corresponding Castel's result and is optimum.

Note: residual finiteness of the mapping class groups guarantees that a large supply of finite index subgroups of the mapping class groups.

-

We also obtain the following result as a corollary of Main Theorem.

Corollary B

Let g and g' be integers ≥ 2 . Suppose that $Mod(\Sigma_{g,p})$ is virtually embedded into $Mod(\Sigma_{g',p'})$. Then the following inequalities hold:

(1) $3g + p \le 3g' + p'$, (2) $2g + p \le 2g' + p'$.

It is easy to observe that, if (3g + p, 2g + p) = (3g' + p', 2g' + p'), then (g, p) = (g', p'). Namely, we have;

Corollary B'

Let g and g' be integers ≥ 2 . If $\exists H \leq \operatorname{Mod}(\Sigma_{g,p}), \exists H' \leq \operatorname{Mod}(\Sigma_{g',p'})$: finite index subgroups s.t. $H \hookrightarrow H'$ and $H \leftarrow H'$, then (g, p) = (g', p').

イロト イポト イヨト イヨト 二日

Idea of Proof

/⊒ ► < ∃ ►

э

Main Theorem (rephrased)

 $A(P_m^c) \leq \operatorname{Mod}(\Sigma_{g,p})$ if and only if *m* satisfies the following inequality.

$$m \leq \left\{egin{array}{ll} 0 & ((g,p)=(0,0),(0,1),(0,2),(0,3))\ 2 & ((g,p)=(0,4),(1,0),(1,1))\ p-1 & (g=0,\ p\geq 5)\ p+2 & (g=1,\ p\geq 2)\ 2g+p+1 & (g\geq 2) \end{array}
ight.$$

Proof of corollary A (2/2)

Corollary A (rephrased)

(1) If B_{2g+1} is virtually embedded into $Mod(\Sigma_{g',0}^1)$, then $g \leq g'$.

((2) can be treated similarly and so skipped.)

Proof.

Every finite index subgroup of B_{2g+1} contains a right-angled Artin group A, but $Mod(\Sigma^1_{g',0})$ does not contain A if $g' \leq g - 1$.

•
$$A(P_{2g+1}^c) \hookrightarrow B_{2g+1}$$
 (Main Thm).

- If G contains a right-angled Artin group A, then any finite index subgroup N of G contains A.
- If $g' \leq g 1$, then $A(P_{2g+1}^c)$ is not embedded in $Mod(\Sigma_{g',0}^1)$ (Main Thm).

Main Theorem (rephrased)

 $A(P_m^c) \leq \operatorname{Mod}(\Sigma_{g,p})$ if and only if *m* satisfies the following inequality.

$$m \leq \left\{egin{array}{ll} 0 & ((g,p)=(0,0),(0,1),(0,2),(0,3))\ 2 & ((g,p)=(0,4),(1,0),(1,1))\ p-1 & (g=0,\ p\geq 5)\ p+2 & (g=1,\ p\geq 2)\ 2g+p+1 & (g\geq 2) \end{array}
ight.$$

Proof of Main Theorem (2/6)

Lemma (K.)

Suppose that $\chi(\Sigma_{g,p}) < 0$. Then $A(P_m^c) \hookrightarrow \operatorname{Mod}(\Sigma_{g,p})$ only if $P_m^c \leq C(\Sigma_{g,p})$.

By this lemma, the problem

Problem

Decide whether $A(P_m^c)$ is embedded into $Mod(\Sigma_{g,p})$.

is reduced into the following problem when $\chi < 0$:

Problem

Decide whether $P_m^c \leq C(\Sigma_{g,p})$.

- 4 同 6 4 日 6 4 日 6

Proof of Main Theorem (3/6)

Problem (rephrased)

Decide whether $P_m^c \leq C(\Sigma_{g,p})$.

A sequence $\{\alpha_1, \alpha_2, \ldots, \alpha_m\}$ of closed curves on $\Sigma_{g,p}$ is called a linear chain if this sequence satisfies the following.

- Any two distinct curves α_i and α_j are non-isotopic.
- Any two consecutive curves α_i and α_{i+1} intersect non-trivially and minimally.
- Any two non-consecutive curves are disjoint.

If $\{\alpha_1, \alpha_2, \ldots, \alpha_m\}$ is a linear chain, we call *m* its length.

Takuya Katayama Certain right-angled Artin groups in mapping class groups

Proof of main Theorem (4/6)

Note that if $|\chi(\Sigma_{g,p})| < 0$ and $\Sigma_{g,p}$ is not homeomorphic to neither $\Sigma_{0,4}$ nor $\Sigma_{1,1}$, then there is a linear chain of length m on $\Sigma_{g,p}$ if and only if $P_m^c \leq C(\Sigma_{g,p})$.

Proof of main Theorem (5/6)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Proof of Main Theorem (6/6)

Main Theorem*

 $P_m^c \leq \mathcal{C}(\Sigma_{g,p})$ if and only if m satisfies the following inequality.

$$m \leq \begin{cases} 0 & ((g,p) = (0,0), (0,1), (0,2), (0,3)) \\ 2 & ((g,p) = (0,4), (1,0), (1,1)) \\ p-1 & (g = 0, p \geq 5) \\ p+2 & (g = 1, p \geq 2) \\ 2g+p+1 & (g \geq 2) \end{cases}$$

Proof.

Double induction on the ordered pair (g, p).

@▶ ∢ ⋽▶ ∢

Distinguishing MCGs of the top comp = 3 surfaces

3g - 3 + p = 3 surfaces are $\Sigma_{0,6}$, $\Sigma_{1,3}$ and $\Sigma_{2,0}$. It is well-known that the following sequence is exact:

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \operatorname{Mod}(\Sigma_{2,0}) \to \operatorname{Mod}(\Sigma_{0,6}) \to 1.$$

This implies that ${\rm Mod}(\Sigma_{2,0})$ and ${\rm Mod}(\Sigma_{0,6})$ share many finite index subgroups.

Theorem (K.)

Suppose that (g, p) is either (2, 0) or (0, 6). Then any finite index subgroup of $Mod(\Sigma_{g,p})$ is not embedded into $Mod(\Sigma_{1,3})$.

 $A(C_6^c) \hookrightarrow \operatorname{Mod}(\Sigma_{2,0})$ but $\operatorname{Mod}(\Sigma_{1,3})$ does not contain $A(C_6^c)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you very much, and we wish you a Merry Christmas!

T. Katayama and E. Kuno, "The RAAGs on the complement graphs of path graphs in mapping class groups", preprint. Mail: tkatayama@hiroshima-u.ac.jp