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Preliminaries

Definition (Satellite knot)

P: knot in ST . (Pattern)
C : knot in S3 with framing 0. (Companion)
e : ST ↪→ N(C ): faithful embedding.
Then eP is called a satellite knot (of C ). From here on eP =: Sat(P,C ).

P C

Sat(P,C)
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Problem

What is the minimal number of crossings with which Sat(P,C ) can be
drawn?

Known facts:

cr(Sat(P,C )) ≥ cr(C )/1013. (Lackenby, 2011)

Problem

1.67 (Kirby, 1995)

Is the crossing number of a satellite knot bigger than that of its
companion?

Remarks: “Surely the answer is yes, so the problem indicates the
difficulties of proving statements about the crossing number.”

↑
GOAL
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Adrián Jiménez Pascual (Univ. Tokyo) Adequacy and satellites 23 December, 2017 4 / 19



Problem

What is the minimal number of crossings with which Sat(P,C ) can be
drawn?

Known facts:

cr(Sat(P,C )) ≥ cr(C )/1013. (Lackenby, 2011)

Problem

1.67 (Kirby, 1995)

Is the crossing number of a satellite knot bigger than that of its
companion?

Remarks: “Surely the answer is yes, so the problem indicates the
difficulties of proving statements about the crossing number.”

↑
GOAL
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Problem 1.65 (Kirby, 1995)

Is the crossing number cr(K ) of a knot K additive with respect to
connected sum, that is, is the equality cr(K1#K2) = cr(K1)+ cr(K2) true?

Known facts:

Murasugi proved it is true for alternating knots. (Also Kauffman and
Thistlethwaite)

cr(K1#...#Kn) ≥ cr(K1)+...+cr(Kn)
152 . (Lackenby, 2011)
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Link adequacy

Definition

A state of a link is a function

s : {c1, c2, ..., cn} → {−1, 1}.

s(i) = −1 s(i) = +1

The Kauffman bracket of a link with diagram D can be written as:

〈D〉 =
∑

s

(
A

Pn
i=1 s(i)(−A−2 − A2)|sD|−1

)
.
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s+ is the state for which
∑n

i=1 s+(i) = n

s− is the state for which
∑n

i=1 s−(i) = −n

Definition

D is plus-adequate if |s+D| > |sD| for all s with
∑n

i=1 s(i) = n − 2.
D is minus-adequate if |s−D| > |sD| for all s with

∑n
i=1 s(i) = −n + 2.

D is adequate if plus-adequate and minus-adequate.
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Lemma 1 (Lickorish)

Let D be a link diagram with n crossings.

1 M〈D〉 ≤ n + 2|s+D| − 2, with equality if D is plus-adequate,

2 m〈D〉 ≥ −n − 2|s−D|+ 2, with equality if D is minus-adequate.

Corollary 1 (Lickorish)

If D is adequate:

B(〈D〉) = M〈D〉 −m〈D〉 = 2n + 2|s+D|+ 2|s−D| − 4.

Lemma 2 (Lickorish)

Let D be a connected link diagram with n crossings.

|s+D|+ |s−D| ≤ n + 2,

with equality if D alternating.
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Lemma 3

Let D be a diagram of an oriented link L.

B(J(L)) =
B(〈D〉)

4
.

Proof.
J(L) = (−A−3)wr(D)〈D〉

∣∣∣
A2=t−1/2

.

Theorem 1 (Lickorish)

Let D be a connected, n-crossing diagram of an oriented link L.

1 B(J(L)) ≤ n,

2 if D is alternating and reduced, B(J(L)) = n.
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Link parallels

Definition

Let D be a diagram of an oriented link L. The r -parallel of D is the same
diagram where each link component has been replaced by r parallel copies
of it, all preserving their “over” and “under” strands as in the original
diagram.
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Lemma 4 (Lickorish)

Let D be a link diagram.

If D is plus-adequate, Dr is also plus-adequate.

If D is minus-adequate, Dr is also minus-adequate.

D adequate =⇒ Dr adequate.
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We construct the parallel versions of the given results.

Lemma 1-bis (JP)

Let D be a link diagram with n crossings.

1 M〈Dr 〉 ≤ nr2 + 2r |s+D| − 2, with equality if D is plus-adequate,

2 m〈Dr 〉 ≥ −nr2 − 2r |s−D|+ 2, with equality if D is minus-adequate.

Corollary 1-bis

If D is adequate:

B(〈Dr 〉) = M〈Dr 〉 −m〈Dr 〉 = 2nr2 + 2r |s+D|+ 2r |s−D| − 4.
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Theorem 2 (JP)

Let L be an adequate oriented link.

cr(Lr ) ≥ r2

2
cr(L) + 2r − 1.

Proof.

cr(Lr ) ≥ B(J(Lr )) =
B(〈Dr 〉)

4
≥ r2

2
n + 2r − 1 ≥ r2

2
cr(L) + 2r − 1.

Corollary 2

If L is alternating:

cr(Lr ) ≥ r(r + 1)

2
cr(L) + r − 1.

Proof uses Theorem 2 and Lemma 2. ( |s+D|+ |s−D| ≤ n + 2 )
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Cable knots

Definition

D: diagram of C ⊂ S3.
wr(D): writhe of D.
We call (D; r) (the r -cable of
D) to the r -parallel of D with
−wr(D) full twists.

0− framing

2− parallel

2− parallel

composition

T (6, 2)
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Lemma 5 (JP)

Let K ⊂ S3 be an oriented knot.

B(J(K ; r)) ≥ B(J(K r )).

Proof.
Assume 〈T (−wr(D)r , r)〉

ST
=

∑r
i=0 αiz

i
ST

, αr 6= 0.

Then, 〈D; r〉 = 〈T (−wr(D)r , r)〉
ST

∣∣∣
z i
ST

=〈D i 〉
=

∑r
i=0 αi 〈D i 〉.

B(〈D; r〉) ≥ B(αr 〈Dr 〉) ≥ B(αr ) + B(〈Dr 〉) = B(〈Dr 〉).
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P C

Theorem 3

Let P ⊂ ST such that J
ST

(P) =
∑M

k=0 βkzk
ST

with βM 6= 0, let C ⊂ S3,
and let Sat(P,C ) be their satellite knot.

J(Sat(P,C )) =
M∑

k=0

βkJ(C ; k).

Corollary 3

In particular,
B(J(Sat(P,C ))) ≥ B(βMJ(C ;M)).
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Main result

Theorem (JP)

Let P ⊂ ST such that J
ST

(P) =
∑M

k=0 βkzk
ST

with βM 6= 0, and C ⊂ S3

adequate.

cr(Sat(P,C )) ≥ B(βM) +
M2

2
cr(C ) + 2M − 1

≥ cr(C ).

Proof.

cr(Sat(P,C )) ≥ B(J(Sat(P,C )))
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Summary

Problem 1.65 (Kirby, 1995)

Is the crossing number cr(K ) of a knot K additive with respect to
connected sum, that is, is the equality cr(K1#K2) = cr(K1)+ cr(K2) true?

Murasugi proved it is true for adequate knots. (Also Kauffman and
Thistlethwaite)

Problem 1.67 (Kirby, 1995)

Is the crossing number of a satellite knot bigger than that of its
companion?

Remarks: “Surely the answer is yes, so the problem indicates the
difficulties of proving statements about the crossing number.”

It is true for adequate knots.
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