Dijkgraat-Witten invariants of cusped
hyperbolic 3-manifolds
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1 Introduction

In 1990 Dijkgraaf and Witten [4] introduced a topological invariant of closed
oriented 3-manifolds using a finite group and its 3-cocycle. Let M be a
closed oriented 3-manifold, G a finite group and a € Z3(BG,U(1)). Then
the Dijkgraaf-Witten invariant Z (M) (we abbreviate it to the DW invariant
in this paper) is defined as follows:

20n= Y GllMpec

|Gl
y€Hom(71 (M),G)

The topological invariance of Z(M) is obvious from the definition and it is
also evident that Z (M) is a homotopy invariant since M only appears at the
fundamental group and the fundamental class in the definition of Z(M).

Dijkgraaf and Witten reformulated the invariant by using a triangula-
tion of M in the following way. Let K be a triangulation of M. Then the
fundamental class of M is described by the sum of the tetrahedra of K and
v € Hom(m (M), Q) is represented by assigning an element of G to each edge
of K. Z(M) is described as follows:

zon=rm X II etenn®

p€eCol(K) tetrahedron

where a is the number of the vertices of K and ¢, h, k € G are colors of edges
of a tetrahedron of K.

The Turaev-Viro invariant [6] is well known as a state sum invariant of
compact 3-manifolds constructed by using a triangulation. Due to the above
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construction of Z (M) by using a triangulation, we can view the DW invariant
as the “Turaev-Viro type”invariant. However, one of the big difference be-
tween the constructions of these two invariants is that an orientation of each
edge of a triangulation of M is essential in constructing the DW invariant,
meanwhile it is unnecessary in constructing the Turaev-Viro invariant. This
difference makes us expect that the DW invariants may distinguish some
pairs of 3-manifolds with the same Turaev-Viro invariants.

2 Definition of the Dijkgraaf-Witten invari-
ant

First we review the group cohomology briefly. Let G be a finite group. The
n-cochain group C™(G,U(1)) is defined as follows:

C™ (G, U(1)) = e =0
’ (0. GxxOo UL} (>1).

The group operation of C™(G, U (1)) is a multiplication of maps induced by
the multiplication of U(1) and then C™(G,U(1)) is a multiplicative abelian
group since U(1) is so. The n-coboundary map 6" : C"(G,U(1)) — C"*(G,U(1))
is defined by

(0%a)(9) =1 (a€U(1), g€q),

n

(8"a) (g1, s Gns1) = (g2, -, gng1) X [ [ algr, -, gigivns - gnsr)'
=1

_1)’5

(e C"(G,U(1)), g1,---,gnt+1 € G, n>1).
Then we can confirm by the above definition that {(C’”(G U(1)),0™)}2, is
a cochain complex. Hence the n-cocycle group Z"(G,U(1)) and the n-th
cohomology group H"(G,U(1)) are defined as usual.
a € C™"(G,U(1)) is said to be normalized if for any gy, ..., g, € G, « satisfies
(1,92, 9n) = g1, 1,935+, gn) = - =alg1,- .-, gn-1,1) = 1 € U(L).
We assume that any n-cochain is normalized. As we only consider 3-cocycles
in the following of this paper, we restate the cocycle condition for a 3-cocycle
a.

WEESTEVEHOEFE XISREE 35



Figure 1: A local order for a face and for a tetrahedron.

alh, k,Da(g, hk,Da(g, h, k) = a(gh, k, Da(g, h,kl) (g,h,k,l € G).

The cocycle condition takes a important role in the proof of the invariance
of the DW invariant.

Next we explain a local order and a coloring. Fix a triangulation K of
M. Give an orientation to each edge of K such that for any 2-face F' of K,
the orientations of the three edges of F' are not cyclic (as the left side of
Figure 1). Then each tetrahedron ¢ of K has one of each vertex incident to
i outgoing edges of o and to (3 — i) incoming edges of ¢ for i = 0,1,2,3 (as
the right side of Figure 1). Hence a total order on the set of the vertices of
each tetrahedron ¢ by the number of outgoing edges of ¢ is induced by the
choice of the orientations. We call a choice of the orientations of edges of K
a local order of K (or a branching of K).

Fix a triangulation K of M. Give an orientation to each edge (which is
unnecessarily a local order) or each face of K. A coloring ¢ of K is a map
¢ : {oriented edges of K} — G such that for any oriented 2-face F,
P(E5) 2 (Ea)2p(Er)" = (Ea)2p(E1)p(E3)® = p(E1)"o(E5)%p(Es)? =
1, where Ei, F», and Ej3 are the oriented edges of F' and

1 the orientation of E; agrees with that of OF
€ = .
—1 otherwise.

The above condition for a coloring ¢ is required because a coloring ¢ origi-
nally comes from v € Hom(m (M), G). Col(K) denotes the set of the color-
ings of K.

An orientation of each edge of K is required in settling a local order of K
and a coloring of K, which is one of the big difference from the construction
of the Turaev-Viro invariant.

Now we define the DW invariant. Let M be a closed oriented 3-manifold,
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Figure 2: The sign of edges.

G a finite group and o € Z3(G,U(1)). Fix a triangulation K of M with
a local order. Put a coloring ¢ of K, and then some element p(E) of G is
assigned to each oriented edge E of each tetrahedron o. We call p(F) the
color of E and such a tetrahedron o the colored tetrahedron, denoted by

(0,9).

Vo
U3

V1

Figure 3: A colored tetrahedron.

Let v, vy, v9,v3 be the vertices of o with vy < v; < v9 < w3 by the
local order (v; is incident to i outgoing edges of o). Put ¢({vovy)) = g,
o((v1v2)) = h, p({vavg)) = k. Correspond a(g, h, k)¢ € U(1) to the colored
tetrahedron (o, ). We call W(o, ) = a(g, h, k)¢ the symbol of the colored
tetrahedron (o, ¢). As well as g, h, k € G, € is determined by the local order.
As previously stated, a local order determines a total order on the set of the
vertices of each tetrahedron o. Furthermore the total order determined by
the local order settles an orientation of . On the other hand, since M is an
oriented 3-manifold, an orientation of ¢ is induced by that of M. We define
e appeared in the symbol of (o, ¢) as follows:

{ 1 the orientation of o by the local order agrees with the orientation of M
€ =

—1 otherwise.
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Theorem 2.1. Let M be a closed oriented 3-manifold, G a finite group and
a € Z3(G,U(1)). Let K be a triangulation of M with a local order. Let
O1,...,0, be the tetrahedra of K and a the number of the vertices of K. The
Dijkgraaf-Witten invariant Z (M) is defined as follows:

n

2(01) = éw S W)

peCol(K) i=

Then Z (M) is independent of the choice of a triangulation K of M with a
local order.

Remark 2.2. In general some triangulation K of M does not admit a local
order. Nevertheless, for any closed oriented 3-manifold M, M has a trian-
gulation which admits a local order. For example, a simplicial triangulation
K of M admits a local order determined by a total order on the set of the
vertices of K.

Remark 2.3. Z(M) only depends on the cohomology class of « € Z3(G,U(1)).
Furthermore, Z(—M) = Z(M), where —M is the oriented 3-manifold with
the opposite orientation to M.

For a compact oriented 3-manifold M with M # (), the DW invariant of
M is defined by using a triangulation K of M and a local order of K in the
same way as the closed case. However, for OM # () case, the DW invariant
of M is determined not only by M but also by a triangulation of M and its
coloring.

3 Generalization of the Dijkgraaf-Witten in-
variant

We construct another version of the DW invariant for compact oriented 3-
manifolds with non-empty boundary, which we call the generalized DW in-
variant.

Let M be a compact oriented 3-manifold with boundary. We consider a
triangulation of M with ideal vertices such that each boundary component
of M converges at an ideal vertex. We call such a triangulation of M with
ideal vertices a generalized ideal triangulation of M in this paper. In general,
a generalized ideal triangulation K of M has both interior vertices and ideal

5
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vertices. If OM = (), K has no ideal vertices, that is, K is an ordinary trian-
gulation of a closed 3-manifold M. On the other hand, an ideal triangulation
is a generalized ideal triangulation without interior vertices.

Let K be a generalized ideal triangulation of M with a local order. Put
a coloring ¢ of K and assign each colored tetrahedron (o, ) to the symbol
W (o,¢) = a(g, h, k) by the local order. Then we define the generalized DW
invariant in the same way as the original DW invariant for closed 3-manifolds.

Theorem 3.1. Let M be a compact oriented 3-manifold with boundary, G
a finite group and o € Z3(G,U(1)). Let K be a generalized ideal triangu-
lation of M with a local order. Let oq,...,0, be the tetrahedra of K and a
the number of the interior vertices of K. The generalized Dijkgraaf- Witten
invariant Z (M) is defined as follows:

z0n =z > [Wiewe.

peCol(K) i=1

Then Z(M) is independent of the choice of a generalized ideal triangulation
K of M with a local order.

By using a generalized ideal triangulation K of M, each component of M
corresponds to an ideal vertex of K. Hence, the generalized DW invariant
of M does not need a triangulation of M nor its coloring. For a closed
3-manifold M, since K has no ideal vertices, the generalized DW invariant
of M is no other than the original DW invariant of M defined in Theorem
2.2.

The proof of Theorem 3.1 consists of two parts, the independence of a
choice of a local order of a fixed generalized ideal triangulation K of M and
the independence of a choice of a generalized ideal triangulation K of M.

The outline of the proof of the indepednece of a choice of a local order
is as follows. Let K; be a generalized ideal triangulation of M obtained by
barycentric subdivision (once) of each tetrahedron of K. We consider the
following local order of K;:

(vertex of K) < (midpoint of an edge of K) < (center of a face of K)

< (center of a tetrahedron of K).
We prove that Z(M) defined by K with an arbitrarily fixed local order co-
incides with Z(M) defined by K; with the above local order, which implies
the independence of the choice of a local order of K.
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Next we explain the proof of the independence of the choice of a general-
ized ideal triangulation K of M. In order to show that, we make use of the
following theorem by Pachner.

Theorem 3.2 (Pachner). Any two triangulations of a 3-manifold M can be
transformed one to another by a finite sequence of the following two types of
transformations shown in Figure 4.

(1,4)-Pachner move )-Pachner move

Nb -4

Figure 4: The Pachner moves.

Owing to Theorem 3.2, it suffices to show the invariance of Z(M) under a
(1,4)-Pachner move and a (2,3)-Pachner move respectively.

We can show Theorem 2.1 in the same way as Theorem 3.1.

Although we introduce a generalized ideal triangulation in the definition
of the generalized DW invariant, in fact it suffices to consider ideal triangu-
lations of M.

Corollary 3.3. Let M be a compact oriented 3-manifold with OM # () or a
cusped oriented hyperbolic 3-manifold, G a finite group and o € Z3(G,U(1)).
Let K be an ideal triangulation of M with a local order. Let oq,...,0, be
the ideal tetrahedra of K. The generalized Dijkgraaf-Witten invariant Z (M)
1s described by the following form.:

Z HW T,
p€eCol(K) i=

Then Z(M) is independent of the choice of an ideal triangulation K of M
with a local order.

We present the following theorem proved by Matveev [5; Theorem 1.2.27].
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Theorem 3.4 (Matveev). Any two ideal triangulations of a 3-manifold M
can be transformed one to another by a finite sequence of the following two
types of transformations shown in Figure 5.

(0,2)-Pachner move (2,3)-Pachner move

0D

Figure 5: The Pachner moves for ideal triangulations.

We call a (2,3)-Pachner move that increases the number of the ideal tetra-
hedra a positive (2,3)-Pachner move in this paper. In general, a given ideal
triangulation of M may not admit a local order. However Benedetti and
Petronio proved the existence of an ideal triangulation with a local order [1;
Theorem 3.4.9].

Theorem 3.5 (Benedetti-Petronio). Let M be a compact oriented 3-manifold
with boundary and K an ideal triangulation of M. Then there exists a finite
sequence of ideal triangulations of M, K = Ko — K1 — --- — K,,, such that
K; is transformed to K;11 by a positive (2,3)-Pachner move and K, admits
a local order.

4 Examples of cusped hyperbolic 3-manifolds

We calculate the generalized DW invariants of some cusped orientable hyper-
bolic 3-manifolds. We show that the generalized DW invariants distinguish
some pairs of cusped hyperbolic 3-manifolds with the same hyperbolic vol-
umes and with the same Turaev-Viro invariants. We also present an example
of a pair of cusped hyperbolic 3-manifolds with the same hyperbolic volumes
and with the same homology groups, whereas with distinct generalized DW
invariants.
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m004 (= 53\ 4y)

Figure 6: Minimal ideal triangulations of m003 and m004.

(1) m003 and m004
According to Regina [2] and SnapPy [3], m003 and m004 are cusped ori-
entable 3-manifolds with the minimal ideal triangulations shown in Figure 6.
The 3-manifold m004 is the figure eight knot complement. Their hyperbolic
volumes, Turaev-Viro inavariants and homology groups are as follows:
Vol(m003) = Vol(m004) =~ 2.02988,

a a b

a b b

TV (m003) = 3 wawbz Z Z

(a,a,b),(a,b,b)€adm

' = TV (m004),

Hi(m003;Z) = Z & Zs, H,(m004;Z) = 7Z.

We show that m003 and m004 have distinct generalized DW invariants.

First we calculate the generalized DW invariant of m004. The minimal
triangulation of m004 admits the local order shown in Figure 6. Identify the
labels of edges with the colors of edges. By the left front face of the left
tetrahedron of m004 shown in Figure 6, a = ba. By the right front face of
the left tetrahedron of m004, b = ab. Hence a = b = 1 € G, which implies
m004 has only a trivial coloring. Therefore, for any finite group G and its
any normalized 3-cocycle «,

Z(m004) = 1.

On the other hand, the minimal ideal triangulation of m003 shown in
Figure 6 does not admit a local order. In order to assign a local order,
transform the ideal triangulation of m003 by (2,3)-Pachner moves.
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Figure 7: A sequence of (2,3)-Pachner moves for m003 to obtain a locally
ordered ideal triangulation.

After (2,3)-Pachner moves five times, the ideal triangulation of m003
which consists of seven ideal tetrahedra admits the local order shown in
Figure 7. The relations between the colors of edges are the following:

a=0,c=0,d=b,e=0bf=1g=0% 1 =1.

Z(mo03) = > a(b,b,b) " a(b’,b,b)a(b®, b, b°)
beG,b5=1

(b, b, %) au(b, b2, b2)au (b2, b3, b?).

In order to confirm Z(m003) # Z(m004), we calculate Z(m003) for G =
Zs and a generator o of H*(Zs5,U(1)) & Zs.

Z(m003) = %(5 + /5 +i\/10 + 2V/5).

Hence the generalized DW invariants distinguish m003 and m004.

11
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m006

m007

Figure 8: Minimal ideal triangulations of m006 and m007.

(2) m006 and m007
According to Regina [2] and SnapPy [3], m006 and m007 are cusped
orientable 3-manifolds with the minimal ideal triangulations shown in Figure
8.
Vol(m006) = Vol(m007) ~ 2.56897,
a b a b b
TV (m006) = Z WaWple | - p 4 c .

= TV (m007),

ISEES

C c
a a

H,(m006;Z) =Z & Zs, Hi(m00T;Z) = Z & Zs.
The generalized DW invariants of m006 and m007 are as follows.

Z(m006) = Z ala,a,a)’a(a,a® a)ala®, a®, a®).

ac€G,ad=1
Z(m007) = Z ala,a,a)a(a™ a a™t).
a€G,a3=1

If G =Zs and «a is a generator of H*(Zs,U(1)) = Zs,

Re(Z(m006)) = —?, Z(m007) = 1.

12
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m009

m010

Figure 9: Minimal ideal triangulations of m009 and m010.

(3) m009 and m010
According to Regina [2] and SnapPy [3], m009 and m010 are cusped
orientable 3-manifolds with the minimal ideal triangulations shown in Figure
9.
Vol(m009) = Vol(m010) ~ 2.66674,

a b c
TV (m009) = Zwawbwc 0 b e

= TV (m010),

Hy(m009;Z) =7 & Zy, Hi(m010;Z) = Z & Zs.
The generalized DW invariants of m009 and m010 are as follows.

Z(m009) = Z ala,a,a).

acG,a2=1

Z(m010) = Z a(b,b,b) ra(b, b7, b)a(b, ¢, c)a(ch, c,c) 7 .

b,ceG,b3=1,c2=1,bc=cb

If G =73 and « is a generator of H*(Z3,U(1)) = Zs,

Z(m009) =1,  Z(m010) = —/3i.

13
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In fact the previous three pairs of cusped hyperbolic 3-manifolds with the
same hyperbolic volumes and the same Turaev-Viro invariants are distin-
guished by their homology groups. The following pair of cusped hyperbolic
3-manifolds with the same hyperbolic volumes and the same homology groups
have distinct generalized DW invariants.

sT78

5788

Figure 11: A minimal ideal triangulation of s788.

14
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(4) s778 and s788

According to Regina [2] and SnapPy [3], s778 and s788 are cusped ori-
entable 3-manifolds with the minimal ideal triangulations shown in Figure
10 and 11 respectively.

Vol(s778) = Vol(s788) ~ 5.33349,

The generalized DW invariants of s778 and s788 are as follows.

Z(s718) = Y a(d,d,d*)a(d, d,d)a(d? d, d*)a(d®, d*, d*)a(d®,d, &)

de@,d1?2=1

xa(d®, d®, d)a(d®, d®, d°)a(d"™, d°, d*°).

Z(s788) = Z ala’®, a,a?)ala®, a®, a*)a(a®, a,a*)a(a®, a,a®) ta(a®, a® a®)?
acG,al?2=1

9 8 9 9

xa(a®,a’,a

If G = Z5 and « is a generator of H?(Zy5, U(1)) = Zys,

Oé<a9’ CL5, a3)71

Z(sT78) = —6, Z(s788) =3 — 2V/3.
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