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Abstract. In this paper, we introduce a distance d̃w3 on the equivalence
classes of spherical curves under deformations of type RI and ambient isotopies.
We obtain an inequality that estimate its lower bound (Theorem 1). In The-

orem 2, we show that if for a pair of spherical curves P and P ′, d̃w3([P ], [P ′])
= 1 and P and P ′ satisfy a certain technical condition, then P ′ is obtained
from P by a single weak RIII only. In Theorem 3, we show that if P and P ′

satisfy other conditions, then P ′ is ambient isotopic to a spherical curve that
is obtained from P by a sequence of a particular local deformations, which

realizes d̃w3([P ], [P ′]).

1. Introduction

A spherical curve is the image of a generic immersion of a circle into a 2-sphere.
Any two spherical curves can be transformed each other by a finite sequence of
deformations, each of which is either one of type RI, type RII, or type RIII that is a
replacement of a part of the curve contained in a disk as in Figure 1, and ambient
isotopies. These deformations are obtained from Reidemeister moves of type Ω1,

Figure 1. Reidemeister moves: type RI, type RII, and type RIII.

type Ω2, and type Ω3 on knot diagrams by ignoring over/under information.
Viro [8] suggested to decompose RIII into the following two types: suppose that

P1 is transformed into P2 by a deformation of type RIII. Note that in RIII of Figure 1,
a triangle is observed in each of the disks. We say that P1 and P2 are related by a
strong RIII if the orientations on the edges of the triangles induced by an orientation
of the spherical curves are coherent. If the orientations are not coherent, then we
say that P1 and P2 are related by a weak RIII. See Figure 2.

Let C be the set of ambient isotopy classes of spherical curves. We say that
two elements v and v′ of C are RI-equivalent, denoted by v ∼RI v′ if there are
representatives P , P ′ of v, v′ respectively such that P ′ is obtained from P by a
sequence of deformations of type RI and ambient isotopies. We note that ∼RI is
an equivalence relation on C (see the proof of Proposition 1). Then C̃ denotes the
quotient set C/ ∼RI and for a spherical curve P , [P ] denotes the quotient containing

P . Then we obtain a 1-complex, denoted by K̃w3 by:
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Figure 2. Strong RIII (left) and weak RIII (right) in a disk D.
Dotted curves indicate the connection patterns of six points on
∂D.

• the set of vertices of K̃w3 corresponds to C̃, and
• two vertices v and v′ are joined by an edge if there are representatives P and
P ′ of v and v′ respectively such that P ′ is obtained from P by a sequence
consisting of one deformation of type weak RIII, and some (possibly, empty)
deformation(s) of type RI and ambient isotopies.

Then d̃w3 denotes the path-metric distance of C̃ induced by K̃w3. That is, for each
pair of vertices v and v′, we define d̃w3 by:

d̃w3(v, v
′) = min{the number of the edges of J | J : path in K̃w3 joining v and v′}

Let P and P ′ be spherical curves. We say that P and P ′ are equivalent under
RI and weak RIII if there are spherical curves P̃ and P̃ ′ such that P̃ is ambient
isotopic to P , P̃ ′ is ambient isotopic to P ′ and P̃ ′ is obtained from P̃ by a sequence
of deformations each of which is of type RI or type weak RIII. Then, we define
dw3(P, P

′) by: dw3(P, P
′)

= min


the number of weak RIII(’s)
in the sequence of

deformations from P̃ to P̃ ′

∣∣∣∣∣∣
P̃ and P̃ ′ are equivalent under RI and

weak RIII, P̃ is ambient isotopic to P ,

and P̃ ′ is ambient isotopic to P ′


If P and P ′ are not equivalent under RI and weak RIII, let dw3(P, P

′) = ∞. Maybe
the next proposition is well-known to the experts, but it will be worth to give a
concrete statement for understanding the proofs of the theorems of this paper.

Proposition 1. For any pair of spherical curves P , P ′ which are equivalent under
RI and weak RIII, we have:

dw3(P, P
′) = d̃w3([P ], [P ′])

For a proof of this proposition, see Appendix.

Some equivalence classes under RI and weak RIII are studied by [1, 2, 3, 4]. Let
P≤7 be the set of the ambient isotopy classes of all of the prime spherical curves
with at most seven double points. In Figure 45 of [3], there is a diagram consisting
of certain elements of P≤7, which describes how the elements are related by a weak
or strong RIII. The elements are named after the notations in Rolfsen’s table [7].
However, we should note that the spherical curves of the diagram are treated up to
mirror image. (For example, the spherical curve denoted 76 is transformed into the
mirror image of 63 in the diagram, and not transformed into 63 itself by a single
deformation of type weak RIII and some deformations of type RI, nevertheless the
diagram in [3] says that 76 is transformed into 63 by a single weak RIII and some
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RI’s.) For a spherical curve P , we use P ∗ to denote the mirror image of P . Figure 3
is a similar diagram obtained from all of the elements of P≤7. (We note that, by
using elementary geometric arguments together with Fact 3 in Section 3, it is easy
to show that 63 is not ambient isotopic to 6∗3, that 76 is not ambient isotopic to
7∗6, that 7B is not ambient isotopic to 7∗B , and that P≤7 consists of the 21 elements
in Figure 3. A systematic proof of this fact will be found in [5].) In [1], an idea
for detecting spherical curves which are not equivalent under RI and weak RIII by
using positive knot diagrams is introduced (for details, see [1, Corollary 3.2]). By
using the idea, it is elementary to show that the quotient set of P≤7 under RI and
weak RIII consists of nine or ten equivalence classes. The ambiguity “nine or ten”
had come from the issue that whether 75 and 7C in Figure 3 are equivalent under
RI and weak RIII, or not. Later, it was shown that 75 and 7C are equivalent under
RI and weak RIII with passing through spherical curves each with eight double
points [4, Figure 6], and this shows that the quotient set consists of nine elements,
depicted in Figure 3.

In this paper, as a sequel of these reserches, we study the distance d̃w3. We
obtain an inequality that estimate its lower bound (Theorem 1). Further, we show

that if d̃w3([P ], [P ′]) = 1 and P and P ′ satisfy a certain technical condition, then
P ′ is obtained from P by a single weak RIII only (Theorem 2). Theorem 2 can be
regarded as a kind of “rigidity” of the deformations from P to P ′. In Theorem 3,
we give a similar result under a different setting. We say that P ′ is obtained from P
by a deformation of type α, if P ′ is obtained by replacing a part of P contained in a
disk as in Figure 4. Then we show that if the pair P , P ′ satisfies other conditions,
then P ′ is obtained from P by applying a sequence of deformations of type α and
ambient isotopies, and this sequence realizes d̃w3([P ], [P ′]) (Theorem 3).

Further by using the results, we study the distance of each pair of elements in
the equivalence classes of Figure 3. We note that we can show, by Remark 3 of
Section 3, that the spherical curves in Figure 3 are not mutually RI-equivalent.

Since each of the equivalence classes (1), (4), (5), (7), (9) has only one element,
this problem is trivial for these equivalence classes. Since each of the equivalence
classes (2), (3) consists of two elements and they are related by a single weak RIII
and RI, this problem is solved for these equivalence classes. For the equivalence
class (8), we will see that d̃w3([75], [7C ]) > 1 (Example 2). On the other hand, by

[3, Figure 45] we see that d̃w3([75], [7C ]) ≤ 2. Hence we have d̃w3([75], [7C ]) = 2.
For the equivalence class (6), we show: For each pair P , P ′ of elements in the

equivalence class (6), d̃w3([P ], [P ′]) is realized by the minimal number of arrows in
the paths joining P and P ′ in the diagram (Example 3, and Assertion 1).

2. Preliminaries

Definition 1 (Gauss word). Let n̂ = {1, 2, 3, . . . , n}. A word w of length n is a
map from n̂ to N. The word is represented by w(1)w(2)w(3) · · ·w(n). Then, we call
each element of w(n̂) a letter. A Gauss word of length 2n is a word w of length 2n

satisfying that each letter in w(2̂n) appears exactly twice in w(1)w(2)w(3) · · ·w(2n).
Let cyc and rev be maps 2̂n → 2̂n where cyc(p) ≡ p + 1 (mod 2n) and rev(p) ≡
−p+ 1 (mod 2n). Two Gauss words, v and w, of length 2n are isomorphic if there

exists a bijection f : v(2̂n) → w(2̂n) satisfying that there exists t ∈ Z such that
w ◦ (cyc)t ◦ (rev)ϵ = f ◦ v (ϵ = 0 or 1). The isomorphisms give an equivalence
relation on the Gauss words. For a Gauss word v of length 2n, the equivalence
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Figure 3. The elements of P≤7. Fourteen of them are obtained
from the knot table of Rolfsen [7] by ignoring over/under infor-
mations of the crossings. We assign them the same symbols as
Rolfsen’s. The spherical curve 7A (7B , 7C resp.) is obtained from
76 (77, 75 resp.) by a single flype. The arrow from a spherical
curve P to a spherical curve P ′ means that P is transformed into
P ′ by a transformation consisting of one deformation of type pos-
itive weak RIII (see Definition 8) and some deformation(s) of type
RI.

Figure 4
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class containing v is denoted by [v]. A Gauss word v′ is called a sub-Gauss word of
the Gauss word v if v′ is obtained from v by ignoring some letters of v. Then, the
set of sub-Gauss words of v is denoted by Sub(v).

Definition 2 (chord diagram). A chord diagram is a configuration of n pair(s) of
points on a circle up to ambient isotopy and reflection of the circle. Traditionally,
two points of each pair are connected by a (straight) arc. This arc is called a chord.
We say that a chord in a chord diagram is isolated if there is no chord transversely
intersecting the chord.

We note that the equivalence classes of the Gauss words of length 2n have one to
one correspondence with the chord diagrams consisting of n chords as in Figure 5.
In this paper, we identify these four expressions in Figure 5, and freely use either

Figure 5. Four expressions.

one of them depending on situations.

Definition 3 (a chord diagram CDP of a spherical curve P ). Let P be a spherical
curve. Then, there is a generic immersion g : S1 → S2 such that g(S1) = P . We
define a chord diagram of P (e.g., Figure 6) as follows: Let k be the number of the
double points of P , andm1,m2, . . . , andmk mutually distinct positive integers. For

Figure 6. A chord diagram CDP of a spherical curve P .

P , fix a base point, which is not a double point on P , and choose an orientation of
P . We start from the base point, and proceed along P according to the orientation
of P . Then we assign m1 to the first double point that we encounter. We assign
m2 to the next double point that we encounter provided it is not the first double
point. Suppose that we have already assignedm1, m2, . . . , andmp. Then, we assign
mp+1 to the next double point that we encounter if it has not been assigned yet.
Following the same procedure, we finally label all the double points of P . We note
that g−1(double point assigned mi) consists of two points on S1 and we shall assign
mi to them. The chord diagram represented by g−1(double point assigned m1),
g−1(double point assigned m2), . . . , and g−1(double point assigned mk) on S1 is
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denoted by CDP , and is called a chord diagram of the spherical curve P . Clearly if
P ′ is a spherical curve that is ambient isotopic to P , then CDP ′ = CDP as chord
diagrams.

We note that P → CDP induces a map from C to chord diagrams. Recall that
CDP is identified with an equivalence class of Gauss words, say [vP ]. By these
facts, we see that there is a map from C to the set of the equivalence classes of the
Gauss words P → [vP ].

Definition 4. Let CD be a chord diagram. Then fc(CD) denotes the number of
the connected components of the union of the chords of CD. For a spherical curve
P , fc(P ) denotes fc(CDP ).

Definition 5 (connected sum). Let Pi (i = 1, 2) be a spherical curve. Suppose
that the ambient 2-spheres are oriented. Let pi be a point on Pi where pi is not a
double point (i = 1, 2). Let di be a sufficiently small disk with center pi (i = 1, 2)

where di∩Pi consists of an arc properly embedded in di. Let d̂i = cl(S2 \di) and P̂i

= Pi∩ d̂i. Let h : ∂d̂1 → ∂d̂2 be an orientation reversing homeomorphism such that

h(∂P̂1) = ∂P̂2. Then, P̂1∪h P̂2 is a spherical curve in the oriented 2-sphere d̂1∪h d̂2.

The spherical curve P̂1 ∪h P̂2 in the oriented 2-sphere is denoted by P1♯(p1, p2),hP2

(or, simply P1♯P2). This spherical curve P1♯(p1, p2),hP2 is called a connected sum
of the spherical curves P1 and P2 at the pair of points p1 and p2 (see Figure 7).

Figure 7. Two spherical curves P1 and P2 and a connected sum P1♯(p1, p2),hP2.

Definition 6 (trivial spherical curve, prime spherical curve). A spherical curve P
is trivial if P is a simple closed curve. A spherical curve P is prime if P is nontrivial
and is not a connected sum of two nontrivial spherical curves.

Remark 1. For a spherical curve P , it is easy to see that fc(P ) is the number of
prime factors of P .

Recall that C denotes the ambient isotopy classes of spherical curves and C̃ the
quotient set C/ ∼RI , where [P ] denotes the element of C̃ represented by the spherical
curve P .

Definition 7 (x(CD)). Let x be a chord diagram. For a chord diagram CD, fix a
Gauss word G representing CD. Then let Subx(G) = {H | H ∈ Sub(G), [H] = x},
where Sub(G) denotes the set of the sub-Gauss words of G, defined in Definition 1.
The cardinality of this subset is denoted by x(G), that is, x(G) = ♯ Subx(G). By the
definition of the isomorphic Gauss words, for another Gauss word G′ representing
CD, it is easy to see x(G′) = x(G). Hence, we shall denote the number by x(CD).
If CD is a chord diagram of a spherical curve P , then x(P ) denotes x(CD). Clearly
if P is ambient isotopic to P ′, then x(P ) = x(P ′). This show that x induces a map
from C to Z≥0, which will be also denoted by x(·).
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Because each equivalence class of the Gauss words is identified with a chord
diagram, we can calculate the number x(CD) by using geometric observations. We
explain this philosophy in Example 1.

Example 1. We consider the chord diagram CD in Figure 8 (Note that CD =
CDP in Figure 6), and we label the chords of CD by αi (1 ≤ i ≤ 6) as in Figure 8.
We consider the subset of the power set of {α1, α2, . . . , α6}, each element of which
represents a chord diagram isomorphic to ⊗. It is elementary to see that this
subset consists of ten elements, those are, {α1, α2}, {α1, α3}, {α1, α4}, {α1, α5},
{α2, α3}, {α2, α4}, {α2, α5}, {α3, α4}, {α3, α6}, and {α4, α6}, and this fact shows
that i(CD) = 10. Similarly, we can show that i(CD) = 6 and i(CD) = 8.

Figure 8. CD.

Remark 2. The integer assigned to each spherical curve P in Figure 3 denotesi(P ).

Figure 9. Reidemeister moves.

Notation 1. For a chord diagram CD, n(CD) denotes i(CD), that is the number
of the chords of CD. For a spherical curve P , n(CDP ) is denoted by n(P ), that is
the number of the double points of P .

A calculation of the number x(CD) by using geometric observations as in Ex-
ample 1 together with Figure 9, we have Facts 1 and 2 below.

Fact 1 ([3], Theorem 2(1)). Let c, c′ ∈ C. Suppose that there are representatives P
and P ′ of c and c′ respectively such that P ′ is obtained from P by a deformation of
type RI. Then, i(c′) = i(c), n(c′) = n(c) + 1 or n(c′) = n(c)− 1.

Fact 2 ([3], Theorem 2(3)). Let c, c′ ∈ C. Suppose that there are representatives P
and P ′ of c and c′ respectively such that P ′ is obtained from P by a deformation of
type weak RIII. Then, i(c′) = i(c)− 1 or i(c′) = i(c) + 1.
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Definition 8. Let c, c′ ∈ C. Suppose that there are representatives P and P ′ of c
and c′ respectively such that P ′ is obtained from P by a deformation of type RI. If
n(c′) = n(c) + 1 (n(c′) = n(c)− 1 resp.), then we call such RI a positive (negative
resp.) RI.

Suppose that there are representatives P and P ′ of c and c′ respectively such that
P ′ is obtained from P by a deformation of type weak RIII. If i(P ′) = i(P )− 1
( i(P ′) = i(P ) + 1 resp.), then we call such weak RIII a positive (negative resp.)
weak RIII.

By Facts 1 and 2, it is easy to show Proposition 2 below.

Proposition 2. Let P , P ′ be spherical curves such that dw3(P, P
′) < ∞. Then

d̃w3([P ], [P ′])(= dw3(P, P
′)) ≡ 0 (mod 2) if and only if i(P ) ≡ i(P ′) (mod 2).

Example 2. Let 75, 7C be the spherical curves in Figure 3. In Figure 45 of [3], it

is shown that d̃w3([75], [7C ]) ≤ 2. On the other hand, since i(75) = i(7C) = 14

(Remark 2), Proposition 2 shows that d̃w3([75], [7C ]) ≡ 0 (mod 2). These show that

d̃w3([75], [7C ]) = 2.

Example 3. In the diagram of the equivalence class (6) in Figure 3, for any two
spherical curves P and P ′, which are joined by a path consisting of two arrows in the
diagram, we can show d̃w3([P ], [P ′]) = 2. For example, take 76 and 7A in Figure 3.

Since they are joined by a path consisting of two arrows, we have d̃w3([76], [7A]) ≤ 2.
On the other hand, since i(76) = i(7A) = 11 (Remark 2), Proposition 2 shows

that d̃w3([76], [7A]) ≡ 0 (mod 2). These shows that d̃w3([76], [7A]) = 2. Similar
arguments works for all of the pairs each of which is joined by a path consisting of
two arrows, those are (51, 63), (51, 77), (51, 7B), (62, 76), (62, 7

∗
6), (62, 7A), (63, 6

∗
3),

(63, 77), (63, 7B), (63, 7
∗
B), (6∗3, 77), (6∗3, 7B), (6∗3, 7

∗
B), (76, 7

∗
6), (76, 7A), (7∗6, 7A),

(77, 7B), (77, 7
∗
B), (7B, 7

∗
B). Details are left to the reader.

3. Main results

For spherical curves P , P ′, let n(P ), fc(P ), d̃w3([P ], [P ′]) and dw3(P, P
′) be as

in Section 2.

Theorem 1. Let P, P ′ be spherical curves. Suppose that n(P ) > n(P ′), and that
fc(P ) = fc(P

′). Then we have:

d̃w3([P ], [P ′]) ≥ n(P )− n(P ′).

Example 4. For each N ∈ N, there exist P and P ′ such that fc(P ) = fc(P
′), and

that d̃w3([P ], [P ′]) = n(P )−n(P ′) = N . In fact, let PN , P ′
N be spherical curves as

in Figure 10. It is easy to see that dw3(PN , P ′
N )(= d̃w3([PN ], [P ′

N ])) ≤ N . On the
other hand, since n(PN )− n(P ′

N ) = 4N − 3N = N and fc(PN ) = fc(P
′
N ) = N , we

have d̃w3([PN ], [P ′
N ]) ≥ n(PN )− n(P ′

N ) = N by Theorem 1.

We say that a spherical curve P contains a 1-gon if there is an open disk com-
ponent of S2 \ P that contains exactly one corner. A spherical curve P is called
RI-minimal if P does not contain a 1-gon. It is clear that any spherical curve is
transformed to a minimal one by successively applying deformations of type nega-
tive RI. The following fact is known.

Fact 3 ([1] (cf. [6])). For any spherical curve P , the RI-minimal spherical curves
obtained from P are mutually ambient isotopic.
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Figure 10

Theorem 2. Let P , P ′ be RI-minimal spherical curves such that fc(P )− n(P ) =

fc(P
′)−n(P ′). Suppose that d̃w3([P ], [P ′]) = 1. Then there is a spherical curve P̃ ′

such that P̃ ′ is ambient isotopic to P ′, and that P̃ ′ is obtained from P by applying
a deformation of type weak RIII only, where no RI is required.

Recall that the transformation of spherical curves depicted in Figure 4 is called a
deformation of type α. Here we note that each deformation of type α is represented
by successively applying a deformation of type RIII, and a deformation of type RI
(Figure 11). Then we call it a deformation of type weak (strong resp.) α if the type

Figure 11

of the RIII deformation is weak (strong resp.). By Figure 9 and Figure 11, we have:

Claim 1. If the deformation of type α is of type weak α, then the deformatin of
type RIII relevent to it is always positive.

Theorem 3. Let P , P ′ be RI-minimal spherical curves such that fc(P ) = fc(P
′) =

1, and that d̃w3([P ], [P ′]) = q < ∞. Suppose that n(P ) − n(P ′) = q, and thati(P ) − i(P ′) = q. Then there is a spherical curve P̃ ′ such that P̃ ′ is ambient

isotopic to P ′, and that P̃ ′ is obtained from P by applying deformations of type
weak α successively q times and this sequence realizes d̃w3([P ], [P ′]).

Example 5. For each N ∈ N, let QN , Q′
N be spherical curves as in Figure 12.

It is easy to see that fc(QN ) = fc(Q
′
N ) = 1, n(QN ) = 3N + 1, n(Q′

N ) = 2N + 1,
hence n(QN ) − n(Q′

N ) = N , and i(QN ) = 2N2 + 2N, i(Q′
N ) = 2N2 + N ,

hence i(QN )− i(Q′
N ) = N . By Theorem 1, we see that d̃w3([QN ], [Q′

N ]) ≥ N .
On the other hand, it is easy to show that Q′

N is obtained from QN by applying

deformations of type weak α N times. This shows that d̃w3([QN ], [Q′
N ]) ≤ N .

Hence d̃w3([QN ], [Q′
N ]) = N . These show that the statement in Theorem 3 is

exact.

For the proofs of Theorems 1, 2 and 3, we prepare some notations and lemmas.
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Figure 12

Notation 2. Let P and P ′ be two spherical curves that are equivalent under RI and
weak RIII, i.e., there exists a finite sequence of spherical curves P = P0, P1, . . . , Pm =
P ′, where Pi is obtained from Pi−1 by a deformation of type RI or type weak RIII.
Then, Opi denotes the deformation from Pi−1 to Pi, and these settings are expressed
by using the notation:

P = P0
Op1→ P1

Op2→ · · · Opm→ Pm = P ′.

Since every deformation of type RIII does not change the number of double points
of P (= n(P )), we have the next lemma.

Lemma 1. n(P ′)− n(P ) = ♯{i | Opi : positive RI } − ♯{j | Opj : negative RI }.

By Figure 9, we immediately have :

Lemma 2. If Opi is of type positive RI, then fc(Pi) − fc(Pi−1) = 1.

Let P and P ′ be spherical curves. Suppose that P ′ is obtained from P by a
deformation of type positive weak RIII. Then, Figure 13 describes the corresponding

Figure 13. A single positive weak RIII.

transformation on chord diagrams. The chords i, j, and k are called the triple
relevant to the weak RIII. We call the chord j in the right chord diagram in Figure 13
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the isolated chord in the triple relevant to the weak RIII. Then we define the value,
denoted µw3(P, P

′) as follows.

µw3(P, P
′) = ♯{chord in CDP ′ intersecting the chord j transversely}.

By geometric observations of Figure 14, we have Lemma 3 below.

Figure 14. CDP and CDP ′ under a positive weak RIII sending P
to P ′.

Lemma 3. If Opi is of type positive weak RIII, then fc(Pi) − fc(Pi−1) = 0 or 1.
Further, fc(Pi−1)− fc(Pi) = 0 if and only if µw3(Pi−1, Pi) ̸= 0.

By Lemma 2 and Lemma 3, we have the following equality.

fc(P
′) = fc(P ) + ♯{i | Opi : positive RI} − ♯{j | Opj : negative RI}(1)

+ ♯{k | Opk : positive weak RIII, µw3(Pk−1, Pk) = 0}
− ♯{l | Opl : negative weak RIII, µw3(Pl, Pl−1) = 0}.

Let reduced(P ) be an RI-minimal spherical curve obtained from P by succes-
sively applying deformations of type negative RI. Note that CDreduced(P ) is obtained
from CDP by successively removing outermost isolated chords (e.g., Figure 15).

Figure 15. (P , reduced(P )) and (CDP , CDreduced(P )).

Remark 3. For spherical curves P and P ′, we see, by Fact 3, that [P ] = [P ′] if and
only if reduced(P ) is ambient isotopic to reduced(P ′).

Lemma 4. Suppose that fc(reduced(Pi−1)) = 1. If Opi is a positive weak RIII, then
fc(reduced(Pi)) = 1, and n(reduced(Pi−1)) − n(reduced(Pi)) = 0 or 1. Further
n(reduced(Pi−1))− n(reduced(Pi)) = 0 if and only if µw3(Pi−1, Pi) ̸= 0.
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Proof. Since Opi is of type positive weak RIII, the chords relevant to the weak RIII
Opi is not isolated in CDPi−1 . It is observed by Figure 16 that n(reduced(Pi−1))−
n(reduced(Pi)) = 0 or 1, and if µw3(Pi−1, Pi) ̸= 0, (hence, the isolated chord in the
triple relevant to the weak RIII is not isolated in CDPi) then fc(reduced(Pi)) = 1,
and n(reduced(Pi−1))−n(reduced(Pi)) = 0. Suppose that µw3(Pi−1, Pi) = 0. Then

Figure 16

we see by Figure 16 that
“the set of the isolated chords of CDPi” = “the set of the isolated chords of CDPi−1”
∪{β}, where β is the isolated chord in the triple relevant to the weak RIII Opi.
Since fc(reduced(Pi−1)) = 1, the double points of Pi−1 corresponding to the
isolated chords are removed by successively applying deformation of type nega-
tive RI. Note that by this transformation all of the isolated chords of CDPi−1

is removed. This together with Figure 16 shows that fc(reduced(Pi)) = 1, and
n(reduced(Pi−1))−n(reduced(Pi)) = 1. These complete the proof of the lemma. □

Proof of Theorem 1. Let

P = P0
Op1→ P1

Op2→ · · · Opm→ Pm,

where Pm is ambient isotopic to P ′, be a sequence realizing d̃w3([P ], [P ′]) (=
dw3(P, P

′)).
By (1) above,

fc(P
′)− fc(P ) = ♯{i | Opi : positive RI} − ♯{j | Opj : negative RI}

+ ♯{k | Opk : positive weak RIII, µw3(Pk−1, Pk) = 0}
− ♯{l | Opl : negative weak RIII, µw3(Pl, Pl−1) = 0}.

This together with Lemma 1 shows

fc(P
′)− fc(P ) = n(P ′)− n(P ) + ♯{k | Opk : positive weak RIII, µw3(Pk−1, Pk) = 0}

− ♯{l | Opl : negative weak RIII, µw3(Pl, Pl−1) = 0}.

By the assumption of Theorem 1(fc(P ) = fc(P
′)), this implies
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n(P )− n(P ′) = ♯{k | Opk : positive weak RIII, µw3(Pk−1, Pk) = 0}(2)

− ♯{l | Opl : negative weak RIII, µw3(Pl, Pl−1) = 0}.

By the definition of dw3(P, P
′), we have

dw3(P, P
′) = ♯{k | Opk : positive weak RIII}+ ♯{l | Opl : negative weak RIII}

Then we note that

♯{k | Opk : positive weak RIII}+ ♯{l | Opl : negative weak RIII}
≥ ♯{k | Opk : positive weak RIII}
≥ ♯{k | Opk : positive weak RIII, µw3(Pk−1, Pk) = 0}
≥ ♯{k | Opk : positive weak RIII, µw3(Pk−1, Pk) = 0}
− ♯{l | Opl : negative weak RIII, µw3(Pl, Pl−1) = 0}

= n(P )− n(P ′) (by (2)).

These together with Proposition 1 imply that

d̃w3([P ], [P ′]) = dw3(P, P
′) ≥ n(P )− n(P ′).

□

Proof of Theorem 2. Let

P = P0
Op1→ P1

Op2→ · · · Opm→ Pm , where Pm is ambient isotopic to P ′

be a sequence realizing d̃w3([P ], [P ′]) = 1 (see Proposition 1), hence there exists
unique s (1 ≤ s ≤ m) such that Ops is of type weak RIII. By exchanging P and P ′,
if necessary, we may suppose that Ops is of type positive weak RIII.

Claim 2.

µw3(Ps−1, Ps) ̸= 0.

Proof. Suppose, for a contradiction, that µw3(Ps−1, Ps) = 0.
By Lemma 1 and (1) above,

fc(P
′)− fc(P ) = n(P ′)− n(P )

+ ♯{k | Opk : positive weak RIII, µw3(Pk−1, Pk) = 0}
− ♯{l | Opl : negative weak RIII, µw3(Pl, Pl−1) = 0}.

This together with the assumption of Theorem 2 (fc(P )− n(P ) = fc(P
′)− n(P ′))

shows

♯{k | Opk : positive weak RIII, µw3(Pk−1, Pk) = 0}
= ♯{l | Opl : negative weak RIII, µw3(Pl, Pl−1) = 0}.

Since µw3(Ps−1, Ps) = 0, this shows that there exists another deformation of type
weak RIII in the sequence, contradicting the fact that P0 → P1 → · · · → Pm realizes
d̃w3([P ], [P ′]) = 1. □

Recall that Op1, Op2, . . . , Ops−1 are of type RI. Since P contains no 1-gon, by
Fact 3 we obtain the next claim.

研究集会「結び目の数学 X」報告集  182



Figure 17

Claim 3. P is ambient isotopic to reduced(Ps−1), in particular CDP is obtained
from CDPs−1 by successively removing outermost isolated chords, say a1, a2, . . . , at.

Since each member of the triple in CDPs−1
relevant to the weak RIII Ops is

not isolated in CDPs−1 , we see that each ai (1 ≤ i ≤ t) is not a member of the
triple relevant to the weak RIII Ops. Hence a1, a2, . . . , at survive in CDPs

. By
Claim 2, we see that the isolated chord in the triple relevant to the weak RIII Ops
is not isolated in CDPs . These show that CDreduced(Ps) is obtained from CDPs

by successively removing the chords a1, a2, . . . , at that are outermost at each step.
Since Ops+1, . . . , Opm are of type RI, and P ′ is RI-minimal, by Fact 3, this shows:

Claim 4. reduced(Ps) is ambient isotopic to P ′, and that CDP ′ is obtained from
CDPs

by removing a1, a2, . . . , at.

Claim 3 and Claim 4 show that reduced(Ps−1) and reduced(Ps) are related by
a single weak RIII, and, hence P and P ′ are related by a single weak RIII. This
completes the proof of Theorem 2. □

Proof of Theorem 3. Let P = P0
Op1→ P1

Op2→ · · · Opm→ Pm, where Pm is ambient
isotopic to P ′, be the sequence realizing d̃w3([P ], [P ′]) (= dw3(P, P

′)). Then let
{i1, i2, . . . , iq} (1 ≤ i1 < i2 < · · · < iq ≤ m) be the set of the numbers such that
Opi1 , Opi2 , . . . , Opiq are of type RIII. By the assumption of Theorem 3 ( i(P ) −i(P ′) = q), and Facts 1 and 2, we see that each Opij (j = 1, 2, . . . , q) is of type
positive weak RIII.

Claim 5. µ(Pij−1, Pij ) = 0 (j = 1, 2, . . . , q).

Proof. We first consider the pair Pi1−1, Pi1 . Since Op1, Op2, . . . , Opi1−1 are of type
RI, we immediately have n(reduced(P0)) = n(reduced(P1)) = · · · = n(reduced(Pi1−1)).
Then by Lemma 4, we have that n(reduced(Pi1−1))−n(reduced(Pi1)) = 0 or 1, and
that n(reduced(Pi1−1))−n(reduced(Pi1)) = 1 if and only if µw3(Pi1−1, Pi1) = 0. By
using the same arguments inductively, we have that for each j, n(reduced(Pij )) =
n(reduced(Pij+1)) = · · · = n(reduced(Pij+1−1)), where Piq+1−1 = Pm, n(reduced(Pij−1))−
n(reduced(Pij )) = 0 or 1, and that n(reduced(Pij−1))−n(reduced(Pij )) = 1 if and
only if µw3(Pij−1, Pij ) = 0. Since P0 = P , and Pm is ambient isotopic to P ′, these
together with the assumptions of Theorem 3 (RI minimality of P and P ′, and the
equality n(P )− n(P ′) = q) show that µw3(Pij−1, Pij ) = 0 (j = 1, 2, . . . , q). □

Let {a(0)1 , . . . , a
(0)
t0 } be the set of isolated chords in CDPi1−1 . Since fc(reduced(Pi1−1)) =

fc(P ) = 1 (by the assumption of Theorem 3), CDP0 is obtained from CDPi1−1 by

successively removing the chords a
(0)
1 , . . . , a

(0)
t0 that are outermost at each step.
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Since µw3(Pi1−1, Pi1) = 0 by Claim 5, we see that the isolated chord relevant to the
weak RIII, say β1, is isolated in CDPi1

. These show that CDreduced(Pi1 )
is obtained

from CDPi1
by removing a

(0)
1 , . . . , a

(0)
t0 , β1. Let P

(1)
1 = reduced(Pi1). Since Opi1 is

positive weak RIII, each a
(0)
k is not a member of the triple relevant to the weak RIII

Opi1 . On the other hand, we note that reduced(Pi1−1) is ambient isotopic to P0.

Hence we can apply a deformation of type RIII, say Op
(1)
1

′
, corresponding to Opi1 on

P0 to obtain a spherical curve P
(1)
1

′
such that the chord diagram CD

P
(1)
1

′ contains

exactly one isolated chord corresponding to β1. Since fc(P0) = 1 by the assump-

tion, removing β1 is realized by a deformation of type negative RI, say Op
(1)
1 . As a

conclusion we have obtained a sequence P = P0
Op

(1)
1

′

→ P
(1)
1

′ Op
(1)
1→ P

(1)
1 . Further by

Lemma 4, we see n(P
(1)
1 ) = n(P0) − 1, fc(P

(1)
1 ) = 1. As an upshot, we obtain the

next claim.

Claim 6. There is a sequence P = P0
Op

(1)
1

′

→ P
(1)
1

′ Op
(1)
1→ P

(1)
1 , where Op

(1)
1

′
is

of type positive weak RIII, Op
(1)
1 is of type negative RI with P

(1)
1 is RI-minimal,

n(P
(1)
1 ) = n(P0)− 1, fc(P

(1)
1 ) = 1.

Then we can retake the sequence realizing dw3(P, P
′) as follows.

P = P0
Op

(1)
1

′

→ P
(1)
1

′ Op
(1)
1→ P

(1)
1

Op
(1)
1

′′

→ · · ·
Op

(1)
t0

′′

→ P
(1)
t0+1 = Pi1

(, where Op
(1)
1

′′
, . . . , Op

(1)
t0

′′
are of type positive RI that produce isolated chords in

CDPi1
, which correspond to a

(0)
1 , . . . , a

(0)
t0 ) followed by the subsequence

Pi1

Opi1+1→ Pi1+1

Opi1+2→ · · · Opm→ Pm

of the original sequence. Then by Claim 6 we can apply the above arguments to

the sequence from P
(1)
1 to Pm = P to obtain a sequence such that

(P = P0
Op

(1)
1

′

→ P
(1)
1

′ Op
(1)
1→ )P

(1)
1

Op
(2)
2

′

→ P
(2)
2

′ Op
(2)
2→ P

(2)
2

(, where Op
(2)
2

′
is positive weak RIII, Op

(2)
2 is negative RI) followed by some positive

RI’s, from P (2)′ to Pi2 , then further followed by the subsequence

Pi2 → Pi2+1 → · · · → Pm = P ′

of the original sequence, where P
(2)
2 is RI-minimal, n(P

(2)
2 ) = q − 2, fc(P

(2)
2 ) = 1.

By repeating the arguments, we obtain a sequence

P = P0
Op

(1)
1

′

→ P
(1)
1

′ Op
(1)
1→ P

(1)
1

Op
(2)
2

′

→ P
(2)
2

′ Op
(2)
2→ P

(2)
2 → . . .

· · · → P
(j)
j

Op
(j+1)
j+1

′

→ P
(j+1)
j+1

′ Op
(j+1)
j+1→ P

(j+1)
j+1 → · · ·

Op(q)
q→ P (q)

q → · · · → Pm,

where all of the deformations in the subsequence P
(q)
q → · · · → Pm are of type RI.

Here we note that P
(q)
q is RI minimal. Hence by Fact 3 we have Pm is ambient

isotopic to P
(q)
q .

Claim 7. Each P
(j)
j

Op
(j+1)
j+1

′

→ P
(j+1)
j+1

′ Op
(j+1)
j+1→ P

(j+1)
j+1 represents a deformation of type

weak α.
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Proof. The above arguments imply that P
(j)
j is RI-minimal, and that CD

P
(j)
j

′ con-

tains exactly one isolated chord, say βj , and CD
P

(j+1)
j+1

is obtained from CD
P

(j)
j

′ by

removing βj . Since fc(P
(j)
j ) = 1, this deformation is realized by a deformation of

type negative RI (see Figure 18). It is directly observed from Figure 18, that these
represent a deformation of type weak α. □

Figure 18

Claim 7 shows that by putting P̃ ′ = P
(q)
q we obtain the conclusion of Theorem 3.

□

4. Distance between elements of the equivalence class (6).

In this section, we show that for each pair P , P ′ of elements in the equivalence
class (6) in Figure 3, d̃w3([P ], [P ′]) is realizes by the minimal number of arrows in
the paths joining P and P ′ in the diagram of the equivalence class (6).

By Example 3, for a proof of this, it is enough to prove the next assertion.

Assertion 1. For any pair of elements P and P ′ in equivalence class (6) in Figure 3
such that the minimal number of arrows in the paths in Figure 3 joining P and P ′

is 3, we have d̃w3([P ], [P ′])(= dw3(P, P
′)) = 3.

Proof. We first consider the pair (51, 76). By Figure 3 we have dw3(51, 76) ≤ 3.
Since i(51) = 10, i(76) = 11, we obtain, by Proposition 2 that dw3(51, 76) ≡
1 (mod 2). On the other hand, since fc(51) = fc(76)(= 1), we have dw3(51, 76) ≥
7− 5 = 2 by Theorem 1. These show that dw3(51, 76) = 3. Similar argument works
for the pairs (51, 7

∗
6), (51, 7A). (Details are left to the reader.)

Then we consider the pair (76, 7B). By Figure 3 we have dw3(76, 7B) ≤ 3. Sincei(76) = 11, i(7B) = 12, we obtain dw3(76, 7B) ≡ 1 (mod 2). Hence, it is enough
to show dw3(76, 7B) ̸= 1. Suppose that dw3(76, 7B) = 1. Since n(76) = n(7B) = 7,
and fc(76) = fc(7B) = 1, we see that 76 and 7B are related by a deformation of
type weak RIII only by Theorem 2. For 7B, we have four regions where we can
apply deformations of type weak RIII, that are depicted in Figure 19. It is directly
observed that 76 is not produced by applying the deformation of type weak RIII
there. This contradicts Theorem 2. These show that dw3(76, 7B) = 3. Similar
argument works for the pairs (76, 7

∗
B), (7

∗
6, 7

∗
B), (7

∗
6, 7B), (7A, 77).
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Figure 19

Then we consider the pair (76, 63). In this case, since i(76) = 11, i(63) = 10
it is enough to show dw3(76, 63) ̸= 1. Suppose that dw3(76, 63) = 1. Then we can
apply Theorem 3 to show that 76 is related to 63 by exactly one deformation of
type weak α. However we can show that this is not the case, by using the analysis
as in Figure 20. These show that dw3(76, 63) = 3. Similar argument works for the
pair (7∗6, 6

∗
3). These complete the proof of Assertion 1. □

Figure 20
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Appendix A. Proof of Proposition 1

Proof of Proposition 1. By the definition of d̃w3 and dw3, it is easy to see that
d̃w3([P ], [P ′]) ≤ dw3(P, P

′). Hence we show that dw3(P, P
′) ≤ d̃w3([P ], [P ′]). Let

m = d̃w3([P ], [P ′]). This means that there is a sequence P = P0 → P1 → · · · → Pk

(k ≥ m) and ambient isotopies ϕi
t (i = 0, 1, . . . , k) such that there is a subset

{i1, i2, . . . , im} ⊂ {i = 0, 1, . . . , k} (i1 < i2 < · · · < im) such that

• ϕi
0 = idS2

• ϕj
1(Pj) is transformed to Pj+1 (j = 0, 1, . . . , k − 1) by a deformation of

type RI (if j /∈ {i1, i2, . . . , im}) or by a deformation of type RIII (if j ∈
{i1, i2, . . . , im})

• ϕk
1(Pk) = P ′.

LetDj be the disk in S2 such that the deformation ϕj
1(Pj) → Pj+1 of type RI or type

RIII is performed within Dj . Then let D
(0)
0 = (ϕ0

1)
−1(D0), and P

(1)
1 = (ϕ0

1)
−1(P1)

(hence P
(1)
1 is ambient isotopic to P1). Since (ϕ

0
1)

−1(ϕ0
1(P1)) = P1, we see that P

(1)
1

is obtained from P0 by a deformation of type RI or type weak RIII that is performed

within D
(0)
0 . Then let D

(1)
1 = (ϕ0

1)
−1 ◦ (ϕ1

1)
−1(D1), P

(2)
2 = (ϕ0

1)
−1 ◦ (ϕ1

1)
−1(P2) (,

hence P
(2)
2 is ambient isotopic to P2). It is easy to see that P

(2)
2 is obtained from

P0 by applying a deformation of type RI or type weak RIII that is performed within

D
(0)
0 , then applying a deformation of type RI or type weak RIII that is performed

within D
(1)
1 . For each j ∈ {3, 4, . . . ,m− 1}, let

D
(j)
j = (ϕ0

1)
−1 ◦ (ϕ1

1)
−1 ◦ · · · ◦ (ϕj

1)
−1(Dj), and

P
(j+1)
j+1 = (ϕ0

1)
−1 ◦ (ϕ1

1)
−1 ◦ · · · ◦ (ϕj

1)
−1(Pj+1) (hence P

(j+1)
j+1 is ambient isotopic

to Pj+1).

Then P
(m)
m is obtained from P0 by successively applying deformation of type RI

or type weak RIII that is performed within the disk D
(j)
j . Since P

(m)
m is ambient

isotopic to P ′, this shows that dw3(P, P
′) ≤ d̃w3([P ], [P ′]). □

研究集会「結び目の数学 X」報告集  187



Figure 21
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