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Summary
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Summary

e K: an oriented knot in S% ~ Q(K): the knot quandle of K
The knot quandle is a complete invariant for oriented knots up to orientation.

@ Eisermann established the covering theory of quandles, and
computed the second quandle homology group HS(Q(K)).

@ The knot n-quandle Q,,(K) is a quotient of Q(K) (n € Z~1).

@ Knot n-quandles are more treactable than knot quandles.

We determine the second quandle homology group HS(Q,(K)).




H7 (Qs(K)) =
0 (K.:-Ol)v Z/ZZ (K':_M(l/2,*/3, */3))7
7/47 (K = M(1/2,%/3,%/5)), Z (K : otherwise).

(K = K' & K and K’ are equivalent up to 2-bridge knot summands.)

~ ] 0 (K =01), Z/2Z (K =3),
Hy (Qs(K)) = { Z/6Z (K =5;), Z (K : otherwise).

H§<Q4<K)) = { % Eg ::oi?lll)e;wise). s (LS EY
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(K =0y), ZJ10Z (K
(K : otherwise).

Vn > 5, Hy (Qn(K)) = { OZ Eg :201?}11>e7rwise).

(1) H2(Qn(K)) =0 K =01 (n € Zsy).
(2) Hy (Qu(K)) = HY(Qu(31)) & K =3, (n =3,4,5).
3) Hy(Qs(K)) = HY (Q3(51)) & K = 5. )
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Quandle

Definition [Joyce ‘82, Matveev ‘82]

X: a non-empty set, * : X2 — X: a binary operation

X = (X, *): a quandle

SeVreXrxx=x oVyecX S, : X — X;z— zx*y: a bijection.
eVr y zeX (xxy)xz=(r*x2)x(yx*z2).

Example K: an ori. knot in S® = R*U {0}, E(K) = S*\intN(K).

Q(K) ={a:I— E(K)|a(0) € 0E(K),a(l) = co}/homotopy

axf:=a- 7' (ameridian loop at 5(0) in the +-direction) - 3.
00
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Knot n-quandle

K, K': ori. 1-knots.
Fact o Q(K')=Q(K)< K'~ K or — K! [Joyce ‘82, Matveev '82].
* |Q(K)| <00 K =01 (|Q01)=1)
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Knot n-quandle

K, K': ori. 1-knots.
Fact o Q(K')=Q(K)< K'~ K or — K! [Joyce ‘82, Matveev '82].
* |Q(K)| <00 K =01 (|Q01)=1)

Definition

n € Lz, Qn(K):=Q(K)/z~ Sp(z) (Sy(z)=zxy).
Qn(K) = (Qn(K),*): the knot n-quandle of K.

Fact

® (Q2(41) = Q2(51). o |Q2(31)] =3, [Qs(31)] =4
¢ |Q.(K)| =1« K =0, [Winker '84].

e VX: a finite quandle, In € Zss s.t. Hom(Q(K), X) ¢} Hom(Q,(K), X).



Universal covering of Q, (K)
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Covering, extension and universal covering

X, X: connected quandles, A: a group.
o p: X — X: a covering < p(7j) = p(%) implies that Vi € X, & % § = 7 2.
o X: an extension of X by a group A (A ~ X)
Sdp X —» X st
VAXEAVE,GEX, (N 2)xj=\-(Fx7) and Fx (\-§) =T * .
Vo € X, A~ p~i(x): free and transitive.
e p: X — X: a universal covering
& Vp: X — X: a covering, 36 : X — X: a quandle hom. s.t. p = po ¢.

Note p: X — X: a quandle homomorphism.
p: a universal covering = X: an extension of X (by 7A) = p: a covering



Universal covering of Q, (K)
ce

o If X: an extension of X by a group A, “X = X x A",

[

o If p: X — X: a universal covering, HY(X) & Ay,
(HZ(X): the second quandle homology group)



Universal covering of Q, (K)
ce

o If X: an extension of X by a group A, “X = X x A",

o If p: X — X: a universal covering, HY(X) & Ay,
(HZ(X): the second quandle homology group)

Theorem [Eisermann ‘03]

K: an ori. knot, K: the long knot obtained from K.

If K is nontrivial, then the following hold:

(1) Q(K): an extension of Q(K) by Z(= (Ix) < m (R3\K)).
(2) 3p : Q(K) — Q(K): a universal covering.

\,

Corollary [Eisermann ‘03]

HP(Q(K)) =0 & K = 0y.

Goal To show the knot n-quandle version of the Eisermann’s results.



Main result and its proof
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K an ori. knot, n € Z>,.
7" K: the n-twist spun K (=the 2-knot obtained from K by n-twist spinning).
M:: the n-fold branched covering space of S® branched along K.

If K is nontrivial and n > 2, then the following hold:

(1) Q(7"K): an extension of Q,(K) by (lx) (< m(M3)),

where I € m(M}) = Ker(m (E(K)) - Z/nZ;mg — 1)/{{m})).
(2) dp: Q(7"K) — @Q,(K): a universal covering.

Hy (Qu(K)) 2 (li) < mi(MR).




Main result and its proof
0@0000

To compute HE(Q,(K)), it is sufficient to determine the order of .
K the branching set of M}t = I = [K] € m (M}).

K: prime (< Mj:: irreducible)
(i) |m (M%)| = oo = the universal covering space of M is R3.
p:R3 — M the universal covering.

If I is trivial, each connected component of p~!(K) is S,
1 This contradicts to the Smith theory.
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0@0000

To compute HE(Q,(K)), it is sufficient to determine the order of .
K the branching set of M}t = I = [K] € m (M}).

K: prime (< Mj:: irreducible)

(i) |m (M%)| = oo = the universal covering space of M is R3.
p:R3 — M the universal covering.
If I is trivial, each connected component of p~!(K) is S,

1 This contradicts to the Smith theory.

(ii) |m (M3)| < oo = the universal covering space of M} is S3.
(ii)-(a) n =3,4,5

Using results of [Inoue ‘23] and [Crans et. al. ‘19],

we can compute the order of Ix € m(M}).



Main result and its proof
[e]e] Yolole}

(ii)-(b) n=2

p: 5% — M2: the universal covering, L := p~*(K): an ori. link in S3.
= (order of lx) = |m (M%)|/|{components of L}|.

In [Sakuma ‘90], the link L has been studied.



Main result and its proof
[e]e] Yolole}

(ii)-(b) n=2

p: 5% — M2: the universal covering, L := p~*(K): an ori. link in S3.
= (order of lx) = |m (M%)|/|{components of L}|.

In [Sakuma ‘90], the link L has been studied.

K: composite

K = KlﬁKQ = (erévj?) = (MIT%?[?/IM(M}%?E)
= lK = lKl . ZKQ - 7T1(MI7}1) * 7T1(M17é2) = 7T1(M]7é)
Hence, if [k, and [k, are nontrivial, [k is not a torsion element.

Remark K': prime.
I € m(M}): trivial & K: 2-bridge knot and n = 2.



Main result and its proof
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H7 (Qs(K)) =
0 (K.:-Ol)v Z/ZZ (K':_M(l/2,*/3, */3))7
7/47 (K = M(1/2,%/3,%/5)), Z (K : otherwise).

(K = K' & K and K’ are equivalent up to 2-bridge knot summands.)

~ ] 0 (K =01), Z/2Z (K =3),
Hy (Qs(K)) = { Z/6Z (K =5;), Z (K : otherwise).
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Thank you for your attention.



