Constructing pseudo Goeritz matrix from Dehn coloring of virtual knots

Unhou Kin December 25, 2023

Nagoya City Univercity D1

Table of contents

- Dehn coloring of classical knots
- The pseudo Goeritz matrices of virtual knots
- Main result

• A Dehn coloring matrix of classical knots (1/3)

 ${\cal D}$: A classical knot diagram with m complementary regions

 Z_1, \dots, Z_m : Variables corresponding to the region R_1, \dots, R_m of D

$$\boxed{Z_i + Z_j - Z_k - Z_l = 0} \quad \cdots \quad \textcircled{\$}$$

where the variables Z_i, Z_j, Z_k, Z_l correspond to the regions R_i, R_j, R_k, R_l in figure

A Dehn coloring matrix of classical knots(2/3)

Dehn coloring equations of D:

The system of equations

Dehn coloring matrix of D :

The coefficient matrix of the Dehn coloring equations

Theorem [M. Horiuchi, K. Ichihara, E. Matsudo, S. Yoshida]

A Goeritz matrix can constract from a Dehn coloring matrix of classical knots.

A Dehn coloring matrix of classical knots(3/3)

A **Dehn n-coloring** of D:

a map
$$C: \{R_1, \dots, R_m\} \to \mathbb{Z}/n\mathbb{Z}$$

Theorem [Alexander Madaus, Maisie Newman, Heather M. Russell]

The set of Dehn n-colorings is an invariant of classical knots.

An abstract knot diagram

D: a virtual knot diagram An abstract knot diagram of D: a pair (Σ, D_{Σ}) where the Σ is a compact, orientable or non-orientable surface and D_{Σ} is a knot diagram in Σ like in figure

• Two pseudo Goeritz matrices of virtual knots(1/2)

D: a virtual knot diagram A **semi-arc** of D

 \coloneqq an arc of D between two classical crossing or loop without classical crossing of D

The first (or second) local region index of D

 \coloneqq a numbering of local regions of $\mathbb{R} \setminus D$ around a classical crossing depicted as in figure.

Example of the local region indices

D: a virtual knot diagram as in figure The labeling of region indices of D are given as in figure.

The pseudo Goeritz matrices of virtual knots(2/2)

 $a_1 \cdots a_T$: semi-arcs of D

The first (or second) pseudo Goeritz matrix:

$$G_1(D)$$
 (or $G_2(D)$) =
$$\begin{bmatrix} p_{11} & \cdots & p_{1r} \\ \vdots & & \vdots \\ p_{r1} & \cdots & p_{rr} \end{bmatrix}$$

$$p_{ij} = \begin{cases} \text{the sum of indices of local regions between} \\ \text{semi-arcs } a_i \text{ and } a_j \\ -\sum\limits_{k,\,k\,\neq\,i} p_{ik} \\ & (i=j) \end{cases}$$

Theorem and Example

Theorem [N. Kamada]

The torsion invariant of $G_1(D)$ (or $G_2(D)$) is an invariant of virtual knots.

$$G_{1}(D) = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$$

$$G_{2}(D) = \begin{bmatrix} 0 & -1 & 0 & 1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & 1 & -2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

• A Dehn coloring matrix of virtual knots(1/3)

D: A virtual knot diagram

 $a_1 \cdots a_r$: Semi-arcs of D

 C_1, \dots, C_n : Real crossings of D

 (Σ, D_{Σ}) : An abstract knot diagram of D

 R_1, \dots, R_m : Complementary regions of (Σ, D_{Σ})

 $s(C_p; i, j)$: A local region index of the region between a_i and a_j of D

A Dehn coloring matrix of virtual knots(2/3)

$$x_j - x_i + s(C_p; i, j)(Y_p - Z_v) = 0$$

where the variables x_i, x_j, Y_p, Z_v correspond to the a_i, a_j, C_p, R_v in figure

The system of the equations for real crossings and four local regions around them

Dehn coloring matrix of D:

The coefficient matrix of the Dehn coloring equations

Example

$$\begin{cases} x_3 - x_1 + (Y_1 - Z_1) = 0 & \cdots \\ x_2 - x_3 - (Y_1 - Z_1) = 0 & \cdots \\ x_1 - x_4 - (Y_1 - Z_1) = 0 & \cdots \\ x_4 - x_2 - (Y_1 - Z_2) = 0 & \cdots \\ x_3 - x_1 - (Y_2 - Z_1) = 0 & \cdots \\ x_4 - x_3 - (Y_2 - Z_1) = 0 & \cdots \\ x_2 - x_4 + (Y_2 - Z_2) = 0 & \cdots \\ x_1 - x_2 - (Y_2 - Z_1) = 0 & \cdots \\ \end{cases}$$

A Dehn coloring matrix of virtual knots(3/3)

A **Dehn n-coloring** of D:

a map $C: \{R_1, \dots, R_m, C_1, \dots, C_n, a_1 \dots a_r\} \to \mathbb{Z}/n\mathbb{Z}$

Theorem

The set of Dehn n-colorings is an invariant of virtual knots.

Example and main result

$$\begin{bmatrix} -1 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & -1 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 & -1 & 1 & 0 \end{bmatrix}$$

Main result

A pseudo Goeritz matrix can constract from a Dehn coloring matrix of virtual knots.

• Constructing pseudo Goeritz matrix from Dehn coloring matrix(1/2)

D: A virtual knot diagram

 $a_1 \cdots a_r$: Semi-arcs of D

 C_1, \dots, C_n : Real crossings of D

$$R_1, \cdots, R_m$$
: Complementary regions of (\sum, D_{\sum})

 $s(C_p;i,j)$: A local region index of the region between a_i and a_j of D

 $M_D(=p_{ij})$: Dehn coloring matrix of D where the first to the r-th columns correspond to the $a_1 \cdots a_r$

• Constructing pseudo Goeritz matrix from Dehn coloring matrix (2/2)

 \mathbb{P}_i : A row vector of M_D where $p_{ij} \neq 0$

$$\mathbb{G}_j = \sum_k -\frac{s(C_p; k, j)}{p_{kj}} \mathbb{P}_k$$

$$M_G = \begin{bmatrix} \mathbb{G}_1 \\ \vdots \\ \mathbb{G}_r \end{bmatrix} = \begin{bmatrix} \mathbb{G}^1 & \cdots & \mathbb{G}^r & \mathbb{G}^{r+1} & \cdots & \mathbb{G}^{r+n+m} \end{bmatrix}$$

 $\begin{bmatrix} \mathbb{G}^1 & \cdots & \mathbb{G}^r \end{bmatrix} \text{ is equal to the pseudo Goeritz matrix of } D$ $\begin{bmatrix} \mathbb{G}^{r+1} & \cdots & \mathbb{G}^{r+n+m} \end{bmatrix} = \begin{bmatrix} \mathbb{O} & \cdots & \mathbb{O} \end{bmatrix}$

• Example(1/3)

 M_D is given by the followings.

$$M_D = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & c_1 & c_2 & R_1 & R_2 \\ -1 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & -1 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 & -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}$$

Example(2/3)

From \mathbb{G}_1 to \mathbb{G}_4 are given by the follow

$$\begin{aligned} \mathbb{G}_1 &= \begin{bmatrix} -1 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 \end{bmatrix} - \\ & \begin{bmatrix} -1 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & -1 & 1 & 0 \end{bmatrix} \end{bmatrix} \\ \mathbb{G}_2 &= \begin{bmatrix} 0 & 1 & -1 & 0 & -1 & 0 & 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & -1 & 0 & 1 & -1 & 0 & 0 & 1 \end{bmatrix} - \\ & \begin{bmatrix} 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 \end{bmatrix} - \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & -1 & 1 & 0 \end{bmatrix} \\ \mathbb{G}_3 &= -\begin{bmatrix} -1 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & -1 & 0 & -1 & 0 & 1 & 0 \end{bmatrix} \\ & + \begin{bmatrix} -1 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & -1 & 1 & 0 & -1 & 1 & 0 \end{bmatrix} \\ \mathbb{G}_4 &= -\begin{bmatrix} 1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 0 & 1 & -1 & 0 & 0 & 1 \end{bmatrix} \\ & + \begin{bmatrix} 0 & 0 & -1 & 1 & 0 & -1 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 \end{bmatrix} \end{aligned}$$

Example(3/3)

 M_G is given by the followings.

$$M_G = \begin{bmatrix} 2 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 2 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $G_1(D)$ is given by the followings.

$$G_1(D) = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

Thank you for your attention!