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Abstract

Graph homologies are powerful tools to compute the rational homotopy group of the space of
long embeddings. Two graph homologies have been invented from two approaches to study the
space of long embeddings: the hairy graph homology from a homotopy theoretical approach, and
BCR graph homology from a geometric approach.

The first goal of this article is to construct cycles of the space of long embeddings associated
with 2-loop hairy graphs. The second goal is to construct an injective map from the top hairy graph
homology to the top BCR graph homology, though the latter graph homology is quite modified.
The injectivity plays an essential role in showing that the geometric approach detects the cycles
constructed.
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Introduction

A long embedding is a smooth embedding of Rj to Rn which is standard outside a fixed ball in Rj .
We write Emb(Rj ,Rn) for the space of long embeddings equipped with the C∞ topology. Since
embeddings are immersions, there is a natural map Emb(Rj ,Rn) → Imm(Rj ,Rn) to the space of long
immersions. As the space of long immersions is well-studied, we often consider the difference between
the two spaces

Emb(Rj ,Rn) = hofib(Emb(Rj ,Rn) → Imm(Rj ,Rn)),

called the space of long embeddings modulo immersions.
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The space Emb(R1,R3) is nothing but the space of long knots. Haefliger [Hae] started to study
Emb(Rj ,Rn) for general n and j in the late 1950s. In this article, we consider the following problem.

Problem 0.1. Compute π∗(Emb(Rj ,Rn)). In particular, compare the cases n− j = 2 and n− j ≥ 3.

In the 2010s, Fresse, Turchin andWillwacher, following Arone and Turchin, established a significant
result on the above problem, by developing a homotopy theoretical approach called embedding calculus
[GW, GKW, Wei]1. They showed that if n − j ≥ 3, the rational homotopy group of Emb(Rj ,Rn)
depends only on parities of n, j up to degree shifts.

Behind this property, there is a combinatorial complex HGCn,j called the hairy graph complex,
which is generated by graphs and depends on parities of n and j only.

Theorem 0.2. [AT 1, AT 2, FTW] For n− j ≥ 3, there is an isomorphism

π∗(Emb(Rj ,Rn))⊗Q ∼= H∗(HGCn,j).
2

In this article, we focus on the top hairy graph homology Bn,j = Htop(HGCn,j).

Example 0.3. Let n and j be odd and n− j ≥ 3. Since ̸= 0 ∈ Bn,j , we have

π3(n−j−2)+(j−1)(Emb(Rj ,Rn))⊗Q ̸= 0.

　
Our main result extends Example 0.3 to the case n− j = 2.

Theorem 0.4. [Yos 1]If j is odd and satisfies j ≥ 3,

πj−1Emb(Rj ,Rj+2)u ⊗Q ̸= 0,

where u is the trivial family of the trivial immersion.

Instead of the homotopy theoretical approach, we take a geometric approach called configuration
space integrals. The first but physical formulation for the integrals was introduced by Witten[Wit]
and their mathematical formulations were developed by Bar-Natan[Bar], Bott, Taubes[BT] and so on
in the 1990s. Configuration space integrals for higher (co)dimensional embeddings were introduced
by Bott [Bot] and developed by Cattaneo, Rossi [CR], Sakai and Watanabe [Sak, SW, Wat 1]. The
integrals take value in another graph homology, for which we write An,j . Unfortunately, the approach
has been successful only for 0 and 1-loop graphs (g-loop means the first Betti number is g).

In [Yos 1], we developed configuration space integrals associated with 2-loop graphs to give a
geometric cocycle Z : Hj−1(Emb(Rj ,Rj+2)) → An,j ⊗ R. What we do in this article is to give a

construction of a geometric cycle d ∈ Hj−1(Emb(Rj ,Rj+2)) such that Z(d) = ± .

Although there is a natural map χ : Bn,j → An,j between the two graph homologies, the kernel
and cokernel of χ are not known. As we can observe in the previous paragraph, the injectivity of χ
plays an essential role in showing the non-triviality of cycles.

1Embedding calculus gives a tower of approximation Emb(Rj ,Rn) → TkEmb(Rj ,Rn) which is, if n − j ≥ 3, higher
and higher connected when k increases.

2Since Emb(Rj ,Rn)(n−j ≥ 3) is a group-like homotopy associative H-space, all path-components of Emb(Rj ,Rn)(n−
j ≥ 3) are homotopy equivalent.
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Question 0.5. Show that χ is injective. Redefine An,j and the geometric approach if necessary so
that χ is injective. 3

The following is a partial result of the above question.

Theorem 0.6. [Yos 2] The image of any non-trivial element in Bn,j by the map χ does not vanish by
STU, IHX and orientation relations of An,j .

This article is organized as follows. In Section 1, we state our main result more precisely. In
Section 2, we construct the geometric cycle d after reviewing Sakai and Watanabe’s construction for
the 1-loop case. In Section 3, we define the graph homologies An,j ,Bn,j . In Section 4, we introduce
configuration space integrals associated with 2-loop graphs. In Section 5, we state a key lemma for
cocycle-cycle pairings.

1 Main Result

We write Kn,j (resp. Kn,j) for Emb(Rj ,Rj+2) (resp. Emb(Rj ,Rj+2)).

Notation 1.1. k(Γ) = #V (Γ)/2. g(Γ) = b1(Γ). For example, k( ) = 3 and g( ) = 2.

Note that k(Γ) is an integer for any graph representing an element of Bn,j .

Theorem 1.2 (Y.). Let g = 2 and let n, j = odd such that n− j ≥ 2 and j ≥ 3. If the natural map
χ : Bn,j(k, g) → An,j(k, g) is injective, we have

dimHk(n−j−2)+(g−1)(j−1)(Kn,j ,Q) ≥ dimBn,j(k, g).

Observe that if n − j − 2 = 0, the degree of the homology does not depend on k. Moreover, we
can take sphere cycles in the unknot component as generators of the nontrivial elements:

Corollary 1.3 (Y.). Under the above assumptions, π(g−1)(j−1)(Kj+2,j)u ⊗Q is infinite dimensional.

Remark 1.4. If πj−1(Kj+2,j)u ⊗Q is infinite-dimensional, so is πj−1(Kj+2,j)u ⊗Q.

On the other hand, for (n, j) = (3, 1), we have

Remark 1.5. [Hat] π∗(K3,1)u is trivial.

Note that Budney-Gabai [BG] and Watanabe [Wat 2] already showed that πj−1(Kj+2,j)u ⊗ Q is
infinite-dimensional for j ≥ 2. The main point of our result is that we construct geometric (co)cycles
of the space of long embeddings even for the case n− j = 2, associated with 2-loop hairy graphs that
produce non-trivial elements for n− j ≥ 3 in Theorem 0.2.

2 Cycles: ribbon presentations

2.1 Sakai and Watanebe’s construction (g = 1)

In [Sak, SW, Wat 1], Sakai and Watanabe constructed k(n− j − 2)-cycles

ck : (S
n−j−2)k → Emb(Rj ,Rn)

for k ≥ 2, from specific oriented immersed disks in R3 called wheel-like ribbon presentations. These
cycles are detected by configuration space integrals associated with 1-loop graphs.

3On the other hand, Bn,j is a “good” graph homology in the sense that Bn,j has an operadic description, and Bn,j is
related to (anti-)symmetric polynomials.
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Definition 2.1 ([HKS, HS]). A ribbon presentation P = D ∪ B is an oriented immersed 2-disk in R3

which satisfies the following.

• D = D0 ∪ D1 · · · ∪ Dk are disjoint (k + 1) disks (Di ≈ D2). There is a basepoint ∗ on the
boundary of D0.

• B = B1 ∪ · · · ∪Bk are disjoint k bands (Bi ≈ I × I).

• Each band connects two disks so that {0}× I ⊂ ∂Di and {1}× I ⊂ ∂Dj for some i and j. Each
band can intersect transversally with the interiors of disks except for D0, along curves parallel
to {0} × I in the band. These intersections (with their neighborhoods) are called crossings of
the ribbon presentation.

We always assume that ribbon presentations are simple: all leaves intersect with exactly one band. A
wheel-like ribbon presentation is a simple ribbon presentation that satisfies

• Bi+1 connects D0 and Di (B1 is considered as Bk+1).

• Bi intersects with Di and does not intersect with other disks. (See Figure 1.)

A disk is a node if it intersects with no bands. A disk is a leaf if it intersects with at least one band
and is connected by exactly one band. Note that all disks except D0 of wheel-like ribbon presentations
are leaves.

Remark 2.2. Locally, a crossing of a ribbon presentation is described as follows.

B = {(x1, x2, 0) ∈ R3 | |x1| ≤ 1/2, |x2| < 3},
D = {(x1, 0, x3) ∈ R3 | |x1|2 + |x3|2 ≤ 1}.

Definition 2.3. For a ribbon presentation P with k crossings, we define the thickening VP of P by

VP = B × [−1/4, 1/4]j−1
∪

D × [−1/2, 1/2]j−1.

Observe that the thickness of bands and disks are different. After the smoothing of corners of VP , we
take the boundary of VP and construct the connected sum

φk = ∂VP#ι(Rj).

Then we obtain a long embedding φk : Rj → Rn after a suitable parametrization. A part corresponding
to a crossing of the ribbon presentation is the union of a punctured sphere D̂i ≈ Sj and a tube
B̂i ≈ I × Sj−1. We call D̂i ∪ B̂i (with its neighborhood) a crossing of φk. See Figure 2.

Notation 2.4. We see Rn as Rn = R3×Rn−j−2×Rj−1. Ribbon presentations are constructed in R3.
Thickening is performed using coordinates of Rj−1. We see the parameter space Sn−j−2 as

Sn−j−2 = {(x3, . . . , xn−j+1) ∈ Rn−j−1 | (x3 − 1)2 + x24 + · · ·+ x2n−j+1 = 1}.

Definition 2.5. [Wat 1, SW] The perturbation of a crossing to the direction v ∈ Sn−j−2 is an operation
to replace the band B with the perturbed band B(v). Locally, B(v) is described as

B(v) = {(x1, x2, γ(x2)v ∈ R2 × Rn−j−1 | |x1| ≤ 1/2, |x2| < 3},

using a test function γ whose support is in [−3, 3]. Compare with Lemma 2.2.

Let P be a ribbon presentation with k crossings. For v = (v1, . . . , vk) ∈ (Sn−j−2)k, we can
construct the perturbed presentation Pv = D ∪ B(v) =

∪
Di ∪

∪
Bj(vj) and the thickening VPv .
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Figure 1: The wheel-like ribbon presentation (k = 3)

Figure 2: The i-th crossing

Definition 2.6. Let P be the wheel-like ribbon presentation with k crossings. The wheel-like cycle
ck : (S

n−j−2)k → Emb(Rj ,Rn) is defined by

v 7−→ φv
k = ∂VPv#ι(Rj),

after smoothing of corners and giving parametrizations form Rj .

Remark 2.7. Each crossing gives a Hopf link Sn−j−1 ∪ Sj ↪→ Rn because

•
∪
vi∈Sn−j−2 (core of B̂i(vi)) ≈ ΣSn−j−2 ≈ Sn−j−1

• D̂i ≈ (punctured) Sj

2.2 Our construction (g = 2)

We construct (k(n− j − 2) + (j − 1))-cycles

dΘ(p,q,r) : (S
n−j−2)k × Sj−1 → Emb(Rj ,Rn),

(k = p+ q+ r+1) detected by configuration space integrals associated with 2-loop graphs. Again, we
construct these cycles by perturbating ribbon presentations. Unlike wheel-like ribbon presentations,
the ribbon presentations of our cycles have at least one node (drawn in grey.)

Definition 2.8. Let p, r ≥ 1 and q ≥ 0. The Θ-like ribbon presentation of type (p, q, r) is the ribbon
presentation that satisfies the following.

• D is the union of D0, D11, . . . , D1p, D1(p+1), D1(p+2), D21, . . . , D2q, D31, . . . , D3r.

• B is the union of B11, . . . , B1p, B1(p+1), B1(p+2), B21, . . . , B2q, B31, . . . , B3r.

• B∗i connects D0 and D∗i if (∗, i) ̸= (1, p+ 1), (1, p+ 2).

• B1(p+1) connects D1p and D1(p+1). B1(p+2) connects D1p and D1(p+2).

• D∗i intersects with B∗(i+1) if (∗, i) ̸= (1, p), (1, p+ 1), (1, p+ 2), (2, q), (3, r).

• D2q (D1(p+1) if q = 0) and D3(r−1) intersect with B3r so that D3(r−1) is closer to D0 than D2q

(D1(p+1) if q = 0) is. D33 intersects with B11.

• D1p is a node. D1(p+2) intersects with B31. D1(p+1) intersects with B21 (with B3r if q = 0). The
orientations of these two crossings must be opposite.
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The node D1p is connected to two leaves (D1(p+1) and D1(p+2)) intersecting with (possibly the
same) bands in opposite orientations. In this article, we will focus on the simplest example: the Θ-like
ribbon presentation of type (1, 0, 1). See Figure 3.

In the same way as wheel-like ribbon presentations, we can give a (Sn−j−2)
k
family from k crossings.

Moreover, we can give another Sj−1 family by moving one tube B̂12 around another tube B̂13. See
Figure 4. Note that the cores of B̂12 and B̂13 are not linked during this process since n ≥ 4.

Figure 3: The Θ-like ribbon presentation of type (1, 0, 1)

Figure 4: The additional Sj−1 family

2.3 Replacing the parameter space with sphere

Here, we replace the parameter space of dΘ(1,0,1) with sphere when n − j = 2. General case dΘ(p,q,r)

are similar to dΘ(1,0,1). Recall that dΘ(1,0,1) : S
j−1 × S0 × S0 × S0 → Emb(Rj ,Rj+2). Here, each S0 is

written as
S0 = {insert the band (In), remove the band (Out)}.

Then dΘ(1,0,1) is the sum of 23 components:

dΘ(1,0,1) =
∑
εi∈S0

dΘ(1,0,1)(ε1, ε2, ε3).

Lemma 2.9. If the band of some crossing is Out, that is, if some εi is Out, the component is null-
homotopic, and hence a boundary.

Proof. If the crossing withD12 or that withD13 is Out, the corresponding Sj−1 cycle is null-homotopic.
See Figure 5. If the crossing with D31 is Out, the crossing with D12 is also resolved. Then again the
corresponding Sj−1 cycle is null-homotopic.

By Lemma 2.9, we have [dΘ(1,0,1)] = [dΘ(1,0,1)(In, In, In)] ∈ Hj−1Emb(Rj ,Rj+2).

2.4 Taking the cycle from the unknot component

We show that dΘ(1,0,1)(In, In, In) is in the unknot component when n − j = 2. For general cases
dΘ(p,q,r)(In, In, . . . , In), see Remark 2.11. Note that if n− j ≥ 3, we can easily show dΘ(p,q,r) is in the
unknot component, because each crossing is not linked if the parameter moving on Sn−j−2 is fixed.

Recall that the ribbon presentation for dΘ(1,0,1)(In, In, In) has a specific part as in Figure 3.

Lemma 2.10. The part is resolved if the parameter θ ∈ Sj−1 is fixed.

Proof. We use S4 move [HKS, HS] of ribbon presentations as in Figure 7.

6

50 研究集会「結び目の数理VI」報告集



Figure 5: A component with a band Out

So we have [dΘ(1,0,1)] = [dΘ(1,0,1)(In, In, In)] ∈ πj−1Emb(Rj ,Rj+2)u

Remark 2.11. Recall that the node D1p is connected to two leaves D1(p+1) and D1(p+2). If q ≥ 1,
the two leaves D1(p+1), D1(p+2) intersect with different bands. However, by using the move in Figure
6 repeatedly, we can replace the ribbon presentation so that D1(p+1) and D1(p+2) intersect with the
same band. Moreover, we can show that the value of the cocycle-cycle pairing in Section 5 does not
change before and after this move. 4

Figure 6: The move which does not change the value of the
pairing

Figure 7: dΘ(1,0,1) ⊂ (unknot component)

3 Graph homologies

In knot theory, The following graph homologies A(S1) and B are well known.

A(S1) = Q{Jacobi graphs}/STU, IHX, orientation(AS),
B = Q{hairy graphs}/IHX, orientation(AS)

(The dual of) The quotient A(S1)/1T by the 1T relation is known to be isomorphic to the space of
Q-valued Vassiliev invariants.

Theorem 3.1. [Bar] There exists an isomorphism χ : B → A(S1), called Poincaré-Birkhoff-Witt
isomorphism.

4This argument is analogous to the fact that the values of Vassiliev invariants of order ≤ k are 0, for singular knots
with more than k singularities.

7
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Our graph homology An,j is an analog of A(S1)/1T . Bodd,odd is isomorphic to the connected part

of B. We will introduce another graph homology Ån,j , which is an analogue of A(S1).
Graphs generating An,j and Bn,j are introduced by Bott, Cattaneo and Rossi, so they are called

BCR graphs.

Definition 3.2. A (non-degenerate) BCR graph is a connected graph that has

• two types of vertices: black vertices of degree (−j) and white vertices of degree (−n),

• two types of edges: solid edges of degree (j−1) and dashed edges of degree (n−1)

such that each white (resp. black) vertex has exactly three (resp. one) dashed edges. A hairy graph
is a BCR graph without solid edges.

Example 3.3. , , are BCR graphs. The last one is a hairy graph.

Definition 3.4. We define the three graph homologies Ån,j , An,j and Bn,j as follows.

Ån,j = Q{BCR graphs}/“STU”, “IHX”, orientation
An,j = Q{BCR graphs}/“STU”, “IHX”, chord, orientation
Bn,j = Q{hairy graphs}/“IHX”, orientation

Here, the “IHX” relation is similar to the IHX relation of Jacobi diagrams. The “STU” and Chord
relations are defined as in Fig 8, 9.

Figure 8: STU relation

Figure 9: Chord relation

The following is an analogous result to Theorem 3.1.

Theorem 3.5. [Yos 2] The natural map χ : Bn,j → Ån,j is a monomorphism.

Proof. The proof is analogous to the proof of Theorem 3.1. We construct a left inverse σ : Ån,j → Bn,j
(i.e. σ ◦ χ = id) inductively on the number of black vertices.

4 Cocycles: configuration space integrals

In this section, we quickly review configuration space integrals associated with graphs. Configuration
space integrals give cocycles of the space of long embeddings Emb(Rj ,Rn).

8
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Definition 4.1 (Configuration space). For a long embedding ψ ∈ Emb(Rj ,Rn), we define the config-
uration space Cs,t(ψ) by

Cs,t(ψ) = {(x1, . . . , xs, ys+1, . . . , ys+t) |xi ∈ Rj , yj ∈ Rn} \∆ψ,

where ∆ψ is the fat diagonal

∆ψ =
∪

1≤i<j≤s
{xi = xj} ∪

∪
s+1≤i<j≤s+t

{yi = yj} ∪
∪

1≤i≤s
s+1≤j≤s+t

{ψ(xi) = yj}.

Intuitively, the first s vertices are on the image of ψ while the last t vertices are in Rn. These (s+ t)
vertices do not collide each other.

Definition 4.2 (Configuration space bundle). Let Es,t(Rj ,Rn) be the bundle over Emb(Rj ,Rn) whose
fiber at {ψ̃(u)}u∈[0,1] is Cs,t(ψ = ψ̃(1)).

Next, we define configuration space integrals associated with graphs. If a graph Γ has s black
vertices and t white vertices , we use the configuration space bundle Es,t.

Definition 4.3. Let e be a dashed (resp. solid) edge of Γ. We define the direction map

Pe : Es,t → Sn−1 (resp. Pe : Es,t → Sj−1),

by assigning the direction from the start point to the end point of e. Then a (labeled) graph Γ gives
the map P (Γ) : Es,t −→

∏
Sj−1 ×

∏
Sn−1.

Definition 4.4. Let Γ be a graph such that k(Γ) = k and g(Γ) = g. Let rk,g = k(n − j − 2) + (g −
1)(j − 1). We define the rk,g-cochain I(Γ) by

I(Γ)(c) =

∫
X
c∗π∗Ω(Γ)⊗ [Γ] ∈ R⊗An,j(k, g) (c is a dk,g-chain),

where Ω(Γ) = P (Γ)∗(
∧
ωSj−1 ∧

∧
ωSn−1). 5

Es,t
∏
Sj−1 ×

∏
Sn−1

X Emb(Rj ,Rn)

c∗Es,t
P (Γ)

π

c: rk,g-chain

Theorem 4.5. [SW](g = 1), [Yos 1](g = 2). Define rk,g-cochain Zk,g by

Zk,g(c) =
∑
Γ

k(Γ)=k, g(Γ)=g

I(Γ)

#Aut(Γ)
(c) ∈ R⊗An,j(k, g).

Then Zk,g is a cocycle (at least) when n, j: odd and g = 2.

5Although configuration spaces are open manifolds, there exist canonical compactifications of them, called Fulton
Macpherson compactification [Sin]. So the above integral I(Γ) is convergent.
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5 Cocycle-cycle pairings

Here, we state the key theorem for the parings of the cocycles in Section 4 with the cycles in Section 2.

Notation 5.1. The 2-loop hairy graph of type (p, q, r), or the graph Θ(p, q, r), is the 2-loop planar
graph shaped like the character Θ, whose top, middle and bottom edges have p, q and r hairs.

Notation 5.2. Let the graph Θ(p, q, r) satisfy k(Θ(p, q, r))) = k, or equivalently, k = p + q + r + 1.
Then we define the dk,2-cycle d(Θ(p, q, r)) as dΘ(p,q,r), which is defined in Section 2.

Theorem 5.3 (Pairing formula). Let Θ(p, q, r) be as above. Then we have

Zk,g(d(Θ(p, q, r))) = ±[Θ(p, q, r)] ∈ An,j(k, 2).

Example 5.4.

Z3,2(d( )) = Z3,2(dΘ(1,0,1)) = ±[ ].
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