Knitting pattern with three components

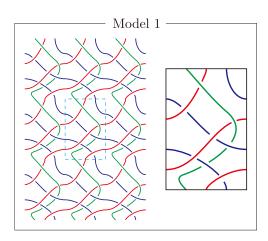
吉野 馨

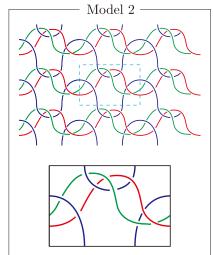
埼玉大学大学院理工学研究科 修士2年

2020.12.24

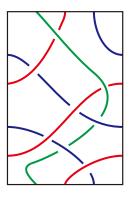
結び目の数理Ⅲ

Motivation





Today's talk



- Definitions of knitting and its pattern
- Equivalence of them
- Mathematical model of knitting patterns obtained from model 1
- Classification of how green string is entangled in mathematical model

Knitting

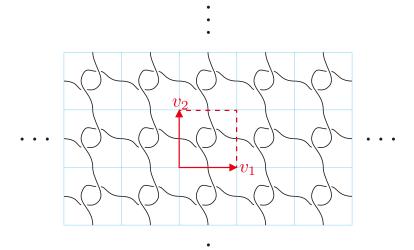
$$\mathcal{R} = \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle$$
: basis of \mathbb{R}^2
 $\forall u = (p, q) \in \mathbb{Z}^2$, $\forall \boldsymbol{x} \in \mathbb{R}^2$, $\Phi^{\mathcal{R}}(u, \boldsymbol{x}) = \varphi_u(\boldsymbol{x}) = \boldsymbol{x} + p\boldsymbol{v}_1 + q\boldsymbol{v}_2$
 $\Rightarrow \Phi^{\mathcal{R}} : \mathbb{Z}^2$ -action.

Definition (Knitting [Kawauchi])

 \widetilde{K} : quadrivalent graph which are embedded in \mathbb{R}^2 and has height information at each of the vertices(crossing points).

 $\widetilde{K} \subset \mathbb{R}^2$: knitting $\stackrel{\mathrm{def}}{\Longleftrightarrow} \widetilde{K}$ is preserved by \mathbb{Z}^2 -action $\Phi^{\mathcal{R}}$ (i.e., ${}^{\exists}\mathcal{R} = \langle \boldsymbol{v_1}, \boldsymbol{v_2} \rangle$: basis of \mathbb{R}^2 s.t. ${}^{\forall}u \in \mathbb{Z}^2$, $\varphi_u(\widetilde{K}) = \widetilde{K}$ and φ_u preserves height information at each of the crossing points).

Knitting

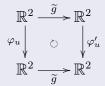


Equivalence of knitting

Definition

 \mathcal{R},\mathcal{R}' : basis of \mathbb{R}^2 , $\Phi^{\mathcal{R}},\Phi^{\mathcal{R}'}$: \mathbb{Z}^2 -actions

Diffeomorphism $\widetilde{g}: (\Phi^{\mathcal{R}}, \Phi^{\mathcal{R}'})$ -equivalent



Definition (Equivalence of knittings)

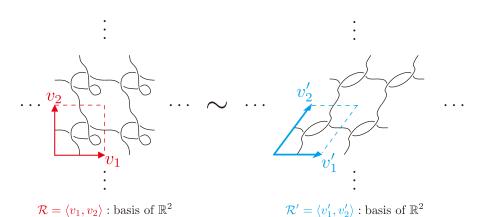
 \widetilde{K} , \widetilde{K}' : knitting

 \widetilde{K} and \widetilde{K}' are equivalent $(\widetilde{K} \sim \widetilde{K}')$

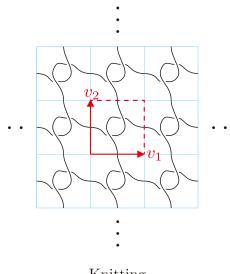
 $\stackrel{\mathrm{def}}{\Longleftrightarrow} \exists \widetilde{g}: (\Phi^{\mathcal{R}}, \Phi^{\mathcal{R}'})$ -equivalent diffeo.

s.t. $\widetilde{g}(\widetilde{K}) \leadsto \widetilde{K}'$: \mathbb{Z}^2 -equivalent Reidemeister moves.

Example



Knitting pattern



Knitting pattern

Knitting

Knitting pattern

Definition (Knitting pattern)

$$Q \subset \mathbb{R}^2$$
 : closed set, $\mathrm{int}Q$: connected, $\overline{(\mathrm{int}Q)} = Q$

Q : fundamental region of \widetilde{K}

 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ The following conditions are satisfied.

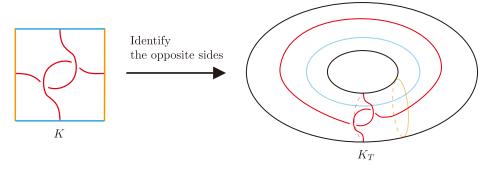
$$\bigcup_{u=(p,q)\in\mathbb{Z}^2}\varphi_u(Q)=\mathbb{R}^2$$

We assume $Q \cong I \times I$.

Then we call the tangle diagram $K = \widetilde{K} \cap Q$ a knitting pattern.

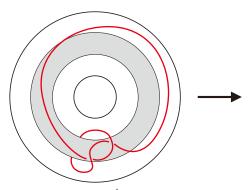
Link diagram on T^2

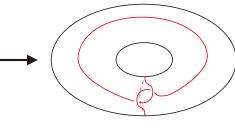
We can obtain a link diagram on T^2 from a knitting pattern.



Link diagram on T^2

$$\begin{split} \widehat{T} &= T^2 \times I \\ \mathrm{pr} : \ \widehat{T} &\to T^2 \times \{0\} \end{split}$$





Link in \hat{T}

Link diagram on T^2

Equivalence of knitting pattern

Definition (TR-equivalent)

 K_T , K_T' : link diagrams on T^2 obtained from knitting patterns K, K'.

 K_T and K_T' are TR-equivalent $(K_T \sim_{TR} K_T')$

 $\stackrel{\mathrm{def}}{\Longleftrightarrow} {}^{\exists}g$: orientation preserving diffeomorphism

s.t. $g(K_T) \rightsquigarrow K_T'$: Reidemeister moves on T^2 .

Definition

Knitting patterns K and K' are equivalent $(K \sim K')$.

$$\stackrel{\text{def}}{\iff} K_T \sim_{TR} K_T'.$$

Primitive knitting pattern

Definition

 \widetilde{K} : knitting, Q : fundamental region of \widetilde{K}

K : knitting pattern obtained from \widetilde{K}

 $K: \underset{\sim}{\operatorname{primitive}} \overset{\operatorname{def}}{\Longleftrightarrow}$ The area of Q is minimum among all of knitting

patterns of \widetilde{K} . primitive knitting pattern

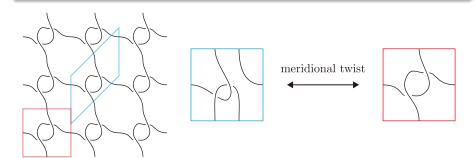
Theorem 1

Theorem 1

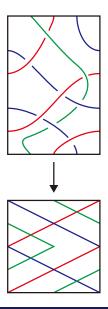
 \widetilde{K} , \widetilde{K}' : knittings

K, K': primitive knitting patterns obtained from \widetilde{K} and \widetilde{K}' .

Then, $\widetilde{K} \sim \widetilde{K}' \Leftrightarrow K \sim K'$



From now, we consider model 1.



Properties of model 1

- Consisting of three components and these are essential simple loops on T^2 .
- A red string passes over a blue string.
- A green string passes through the complement areas of other strings once.

- Step 1 Consider the "slope" for an essential simple component of knitting pattern (Loops in model 1 have slope $\frac{1}{2}$, $-\frac{1}{2}$ and ∞).
- Step 2 Classify link projections on T^2 by "word".
- Step 3 We get link diagrams on T^2 from link projections obtained in step 2.

In the end, we give the classification of the case n=2. (Theorem 3)



Slope for a component of a knitting pattern

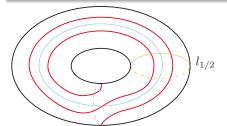
We consider knitting K consisting only of components which are homeomorphic to $\mathbb R$ and these components induce essential simple loops on T^2 .

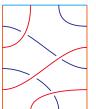
Definition (Slope for a knitting pattern)

l: essential simple loop on T^2

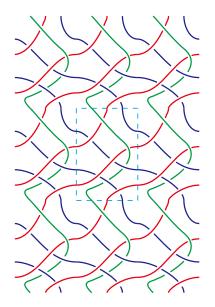
l has slope $\frac{q}{p}$ $(p \in \mathbb{Z}_{\geq 0}, q \in \mathbb{Z}, \gcd(p,q) = 1)$

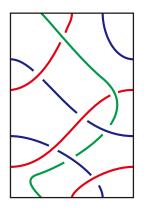
Then, a component l in knitting pattern has slope $\frac{q}{p}$ $(l=l_{q/p})$.





Knitting pattern consisting of $l_{1/2}$, $l_{-1/2}$

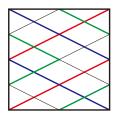


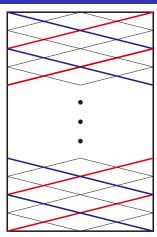


Mathematical model

Properties of model 1

- Consisting of essential simple loops $l_{1/2}$, $l_{-1/2}$ and l_{∞} on T^2 .
- l_{∞} passes through the complement areas of $l_{1/2} \cup l_{-1/2}$ once.





 ${\cal G}$: graph on ${\cal T}^2$ dual to

 $l_{1/n} \cup l_{-1/n}.$

 $l_{q/p}$: essential simple loop on G.

Assumption

 $n \in \mathbb{N}$, $p \in \mathbb{Z}_{>0}$, $q \in \mathbb{Z}$, $\gcd(p,q)=1$

We consider knitting pattern with three components $l_{1/n}$, $l_{-1/n}$ and $l_{q/p}$ on G.

Definition

$$p_1, p_2, q_1, q_2 \in \mathbb{Z}$$
, $gcd(p_1, q_1) = gcd(p_2, q_2) = 1$

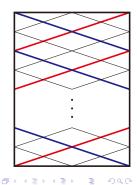
$$\Delta(q_1/p_1, q_2/p_2) = |p_2q_1 - p_1q_2|$$

denotes the minimum crossing number between l_{q_1/p_1} and l_{q_2/p_2} .

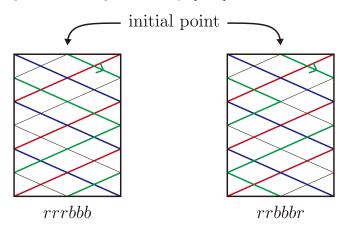
Observation

$$c(l_{1/n}, l_{q/p}) = \Delta(1/n, q/p)$$

(resp. $c(l_{-1/n}, l_{q/p}) = \Delta(-1/n, q/p)$)



Label the crossing point between $l_{q/p}$ and $l_{1/n}$ as r, and $l_{-1/n}$ as b. Then, we get a "word" generated by $\{r, b\}$.



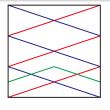
Proposition

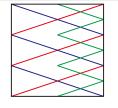
 $l_{1/n}$, $l_{-1/n}$: essential s.c.c. on T^2 with slope $\frac{1}{n}$, $-\frac{1}{n}$ $l_{q/p}$: essential s.c.c. on T^2 on G $\#r = c(l_{1/n}, l_{a/n}), \#b = c(l_{-1/n}, l_{a/n})$

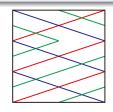
Then.

•
$$\frac{q}{p} = 0 \Rightarrow c = \#r + \#b = 1 + 1 = 2$$

$$\bullet \ {\textstyle \frac{q}{p}} \neq 0 \Rightarrow c = \#r + \#b = 2n$$



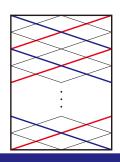




From now, we consider the case $\frac{q}{p} \neq 0$, and we can assume |q| = 1.

Remark

$$w_{q/p}$$
 : a word induced from $l_{q/p}$ $\#r=\#\{r\in w_{q/p}\},\,\#b=\#\{b\in w_{q/p}\}$



Proposition

$$l_{1/n},\ l_{-1/n}$$
 : essential s.c.c. on T^2 with slope $\frac{1}{n},\ -\frac{1}{n}$ $l_{q/p}$: essential s.c.c. on T^2 on G $\#r = c(l_{1/n},l_{q/p}),\ \#b = c(l_{-1/n},l_{q/p})$ $\forall t \in \{0,1,\dots,2n\},\ (\#r,\#b) = (t,2n-t) \Leftrightarrow \frac{q}{n} = \frac{1}{n-t}$

In this slide, we consider link projections on T^2

Definition (Equivalence of word)

Two words with length 2n generated by $\{r,b\}$ are equivalent $\stackrel{\text{def}}{\Longleftrightarrow}$ Two words are same up to circular permutation.

Definition (Equivalence of link projection on T^2)

Two link projections are equivalent

 $\stackrel{\text{def}}{\Longleftrightarrow}$ \exists orientation preserving diffeomorphism of T^2 taking one projection to the other.

Proposition

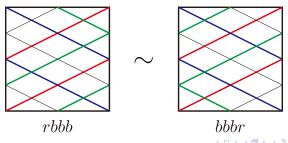
$$w = x_1 x_2 \cdots x_{2n} \ (x_i \in \{r, b\})$$
 : word

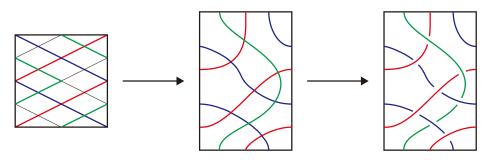
$$w' = x_1' x_2' \cdots x_{2n}' \ (x_i' \in \{r, b\})$$
 : word

 K_T , K_T' : link projections on T^2 induced by w and w'.

Then,

w and w' are equivalent $\Leftrightarrow K_T$ and K_T' are equivalent

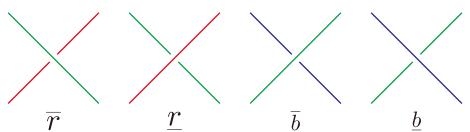




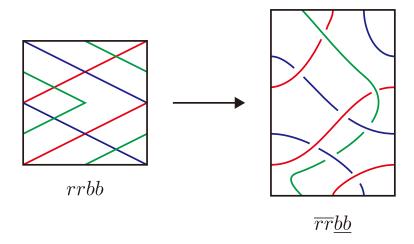
Link diagram on T^2

We consider link diagrams on T^2 with three components $l_{1/n}$, $l_{-1/n}$ and $l_{q/p}$, and $l_{1/n} \geq l_{-1/n}$ (i.e. $l_{1/n}$ passes over $l_{-1/n}$ at all of the crossing points.) holds.

Label the crossing points between $l_{q/p}$ and $l_{1/n} \cup l_{-1/n}$ in the link diagram on T^2 either \overline{r} , \underline{r} , \overline{b} , or \underline{b} .



Example



Split link diagram

Definition

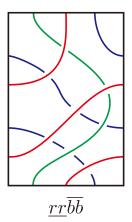
 $\begin{array}{l} D: \mbox{ link diagram on } T^2 \mbox{ with } n \mbox{ components } l_1, l_2, \ldots, l_n \mbox{ } (n \in \mathbb{N}) \\ \hline \emph{$l_i \geq l_j$ (resp. } \emph{$l_i \leq l_j$) } \mbox{ } (i,j \in \{1,2,\ldots,n\}, i \neq j) \\ \stackrel{\text{def}}{\Longleftrightarrow} \emph{l_i passes over (resp. under) } \emph{l_j at all of the crossing points of } \emph{l_i} \\ \mbox{and } \emph{l_j or } \emph{$l_i \cap l_j = \emptyset$ in } D. \end{array}$

 $D: \mathsf{split}$

$$\stackrel{\text{def}}{\Longrightarrow} \exists k \in \{1, 2, \dots, n\} \text{ s.t. } \forall m \in \{1, \dots, k-1, k+1, \dots, n\},$$

$$\begin{cases} l_k \ge l_m \\ l_k \le l_m \end{cases}$$

Example



◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

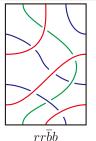
Non split link diagram on T^2

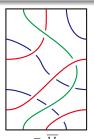
Proposition

 $w = x_1 x_2 \cdots x_{2n} \ (x_i \in \{\overline{r}, \underline{r}, \overline{b}, \underline{b}\})$: word

 K_T : link diagram on T^2 induced by w with $l_{1/n} \geq l_{-1/n}$

$$\begin{cases} x_i \in \{\underline{r}, \overline{b}, \underline{b}\} \\ x_i \in \{\overline{r}, \underline{r}, \overline{b}\} \end{cases} \Leftrightarrow K_T : split$$





RIII-equivalent

Definition (RIII-equivalent)

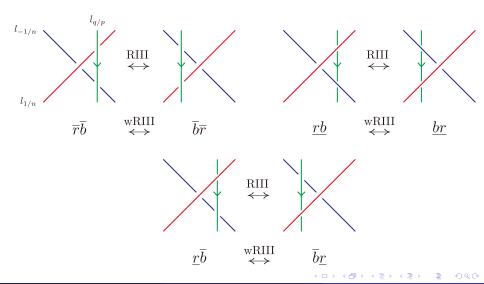
 K_T , K_T^\prime : link diagrams on T^2 obtained from knitting patterns K, K^\prime .

 K_T and K_T' are RIII-equivalent

 $\stackrel{\mathrm{def}}{\Longleftrightarrow} {}^{\exists}g$: orientation preserving diffeomorphism

s.t. $g(K_T) \rightsquigarrow K_T'$: Reidemeister moves III on T^2 .

Reidemeister move III



Link diagram on T^2

Definition (Equivalence of word)

Two words with length 2n generated by $\{\overline{r},\underline{r},\overline{b},\underline{b}\}$ are equivalent $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ Two words are same words up to circular permutation after finite sequence of wRIIIs.

Theorem 2

$$\begin{split} w &= x_1 x_2 \cdots x_{2n} \ (x_i \in \{\overline{r}, \underline{r}, \overline{b}, \underline{b}\}) : \text{ word} \\ w' &= x_1' x_2' \cdots x_{2n}' \ (x_i' \in \{\overline{r}, \underline{r}, \overline{b}, \underline{b}\}) : \text{ word} \\ K_T, \ K_T' : \text{ link diagrams on } T^2 \text{ induced by } w \text{ and } w' \text{ with } \underline{l_{1/n}} \geq \underline{l_{-1/n}} \\ w \text{ and } w' \text{ are equivalent} \Leftrightarrow K_T \text{ and } K_T' \text{ are RIII-equivalent} \end{split}$$

Result

Algorithm

$$n \in \mathbb{N}, t \in \{0, 1, \dots, 2n\}$$

How to get knitting pattern consisting of $l_{1/n}$, $l_{-1/n}$ and $l_{1/(n-t)}$.

- Consider words generated by $\{r,b\}$ with (#r,#b)=(t,2n-t) up to cyclic permutation.
- ② Give hight information to words and exclude word consisting of $\{\underline{r}, \overline{b}, \underline{b}\}$ or $\{\overline{r}, \underline{r}, \overline{b}\}$. (Exclude split knitting patterns)
- Onsider words up to cyclic permutation after finite sequences of wRIIIs.

Theorem 3(Classification of the case n=2)

$$p \in \{0, 1, 2\}, |q| = 1, \gcd(p, q) = 1$$

 $l_{1/2}$, $l_{-1/2}$, $l_{q/p}$: essential simple loops on T^2 with slope $\frac{1}{2}$, $-\frac{1}{2}$ and $\frac{q}{p}$

There are nine non split knitting patterns consisting of $l_{1/2}$, $l_{-1/2}$ and $l_{q/p}$.

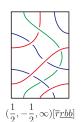
$$\frac{q}{p}=\infty$$

$$(\frac{1}{2},-\frac{1}{2},\infty)[\overline{r}\underline{b}\overline{r}\underline{b}]$$

$$(\frac{1}{2}, -\frac{1}{2}, \infty)[\overline{rr}\underline{bb}]$$

 $(\frac{1}{2}, -\frac{1}{2}, \infty)[\overline{r}\overline{r}\overline{b}\underline{b}]$

 $(\frac{1}{2}, -\frac{1}{2}, \infty)[\overline{r}\underline{r}\overline{b}\underline{b}]$



$$\frac{|q|}{p} = 1$$

 $(\frac{1}{2},-\frac{1}{2},1)[\overline{r}\overline{b}\overline{b}\underline{b}]$

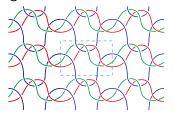
 $(\frac{1}{2}, -\frac{1}{2}, 1)[\overline{r}\overline{b}\underline{b}\underline{b}]$

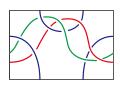
 $(\frac{1}{2}, -\frac{1}{2}, 1)[\overline{r}\underline{b}\overline{b}\underline{b}]$

 $(\frac{1}{2}, -\frac{1}{2}, 1)[\overline{r}\underline{bbb}]$

Future works

- The relation between equivalence of words and equivalence of link diagrams on T^2 up to Reidemeister moves I, II and III.
- ullet Knitting patterns consisting of $l_{n/m}$, $l_{-n/m}$ and $l_{q/p}$.
- Considering model 2.





Reference

- A. Kawauchi, Complexities of a knitting pattern, Reactive and Functional Polymers, 131, (2018) 230 — 236.
- A. A. Akimova, S. V. Matveev and V. V. Tarkaev, Classification of Links of Small Complexity in the Thickened Torus, Proc.SteklovInst.Math. 303, (Suppl 1) (2018) 12 — 24.
- A. A. Akimova, S. V. Matveev and V. V. Tarkaev, Classification of prime links of in the thickened torus having crossing number 5, Journal of Knot Theory and Its Ramifications 29(03), (2020) 2050012.
- A. A. Akimova, Classification of knots in a thickened torus whose minimal octahedral diagrams do not lie in an annulus, Vestn.
 Yuzhno-Ural. Gos. Univ., Ser. Mat. Mekh. Fiz. 7(1), (2015)
 5 10.

Reference

- Sergey V. Matveev, Prime decompositions of knots in $T^2 \times I$, Topology and its Applications, 159, (2012) 1820 1824.
- S. Grishanov, V. Meshkov and A. Omelchenko, A Topological Study of Textile Structures. Part I: Topological Invariants in Application to Textile Structures, Textile Research Journal, 79(8), (2009) 702 — 713.
- S. Grishanov, V. Meshkov and A. Omelchenko, A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile Structures, Textile Research Journal, 79(9), (2009) 822 — 836.