Classification of handlebody decompositions of the 3-sphere and lens spaces

Masaki Ogawa Saitama University D1 (DC1)

December 25, 2020

Masaki OgawaSaitama University D1 (DC1) Classfication of handlebody decompositions or

Definition 1 (Heegaard splitting).

M : closed, orientable, 3-manifold. H_i : genus g handlebody (i=1, 2)

 $M = H_1 \cup_f H_2$

This is a genus g Heegaard splitting of M where $f : \partial H_2 \rightarrow \partial H_1$ is an orientation reversing homeomorphism.

It is well-known that any closed, orientable 3-manifolds have Heegaard splittings (Moise).

A Heegaard splitting

Heegaard splitting of the 3-sphere and lens spaces are classified by Waldhausen, Bonahon and Otal.

Theorem 1 (Waldhausen, 1968).

The 3-sphere admits unique Heegaard splitting up to isotopy for each genus.

Theorem 2 (Bonahon-Otal, 1983).

Lens spaces admit unique Heegaard splitting up to isotopy for each genus $g \ge 1$.

Remark 1.

Above theorems are classifications of Heegaard surfaces of manifolds up to ambient isotopy.

э

A handlebody decomposition

Definition 2.

M: a closed, orientable 3-manifold. H_i : a genus g_i handlebody for i = 1, 2, 3. $M = H_1 \cup H_2 \cup H_3$ is a handlebody decomposition if it satisfies the following conditions:

- $H_i \cap H_j = \partial H_i \cap \partial H_j$ is a (possibly disconnected) compact surface with boundary. It is denoted by F_{ij} ; and

We call this decomposition a type- $(g_1, g_2, g_3; b)$ decomposition where b is the number of branched loci.

We name $F_{12} \cup F_{13} \cup F_{23}$ a branched surface of the handlebody decomposition.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition 1 (Ito-O).

A type-(0,0,1) decomposition of the 3-sphere and lens spaces has exactly 2 branched loci and satisfies $F_{12} \cong D_1 \cup D_2$ and $F_{23} \cong F_{31} \cong A$.

Figure: A type-(0, 0, 1) decomposition of the 3-sphere.

We classified above decomposition up to isotopy.

Theorem 3 (O, 2020).

There is a unique ambient isotopy class of the branched surface of a type- $(0,0,\overline{1})$ decomposition if M is a 3-sphere or a lens space with $(p-1)q \equiv \pm 1 \pmod{p}$. Otherwise, there are exactly two ambient isotopy classes of the branched surface of a type-(0,0,1) decomposition.

Proposition 2 (Ito-O).

A type-(0, 1, 1) decomposition of the 3-sphere and lens spaces satisfies one of the followings.

- (1) It has exactly one branched locus and satisfies $F_{12} \cong F_{31} \cong D$ and $F_{23} \cong T^{\circ}$.
- (2) It has exactly three branched loci and satisfies $F_{12} \cong F_{31} \cong D \cup A$ and $F_{23} \cong P$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

7/36

Proposition 3 (Ito-O).

A type-(0, 1, 1) decomposition of the 3-sphere and lens spaces satisfies one of the followings.

- (1) It has exactly one branched locus and satisfies $F_{12} \cong F_{31} \cong D$ and $F_{23} \cong T^{\circ}$.
- (2) It has exactly three branched loci and satisfies $F_{12} \cong F_{31} \cong D \cup A$ and $F_{23} \cong P$.

・ 何 ト ・ ヨ ト ・ ヨ ト

3

8/36

Theorem 4 (O. 2020).

M: The 3-sphere or a lens space L(p,q).

- Type-(0,1,1) decompositions of M of Proposition 3 (1) has exactly one isotopy class.
- Type-(0,1,1) decompositions of M of Proposition 3 (2) is classified as follows:

exactly 1 ambient isotopy class

(the 3-sphere or p = 2) exactly 2 ambient isotopy classes $(p \neq 2, (p-1)q \equiv \pm 1 \pmod{p})$ exactly 4 ambient isotopy classes $(p \neq 2, (p-1)q \not\equiv \pm 1 \pmod{p})$

Proposition 4 (Ito-O).

A type-(1, 1, 1) decomposition of a 3-sphere and a lens space M satisfies one of the following, where $\{i, j, k\} = \{1, 2, 3\}$.

- (1) It has exactly two branched loci and satisfies $F_{ij} \cong F_{jk} \cong F_{ki} \cong A$.
- (2) It has exactly two branched loci and satisfies $F_{ij} \cong D \cup T^{\circ}$ and $F_{jk} \cong F_{ki} \cong A$.
- (3) It has exactly four branched loci and satisfies $F_{ij} \cong D \cup P$ and $F_{jk} \cong F_{ki} \cong A_1 \cup A_2$.
- (4) It has exactly four branched loci and satisfies $F_{ij} \cong A_1 \cup A_2$ and $F_{jk} \cong F_{ki} \cong D \cup P$.

(5) It has exactly four branched loci and satisfies $F_{ij} \cong F_{jk} \cong F_{ki} \cong D \cup P$. Furthermore, the following holds.

(6) $M \cong L(4,1)$. In this case, M also has a decomposition that satisfies $F_{12} \cong F_{13} \cong F_{23} \cong A \cup A$ and it has four branched loci.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 5 (O, 2020).

There is exactly one ambient isotopy class of embeddings of the branched surface of a type-(1,1,1) decomposition of a 3-sphere that satisfies one of conclusions (2), (3), (4), or (5) of Proposition above.

Theorem 6 (O. 2020).

M: a lens space L(p, q). Type-(1, 1, 1) decompositions of *M* of Proposition 4 (2) is classified as follows:

 $\begin{array}{ll} \mbox{($p=2$)} \\ \mbox{($p=2$)$} \\ \mbox{($p=2$)$} \\ \mbox{($p\neq2$, $($p-1$)$$$$} q \equiv \pm 1 $(mod p)$) \\ \mbox{($p\neq2$, $($p-1$)$$}$$ q \equiv \pm 1 $(mod p)$) \\ \mbox{($p\neq2$, $($p-1$)$$}$ q \equiv \pm 1 $(mod p)$) \\ \mbox{($p\neq2$, $($p-1$)$$}$ q \equiv \pm 1 $(mod p)$) \\ \mbox{($p\neq2$, $($p-1$)$$}$ q \equiv \pm 1 $(mod p)$) \\ \mbox{($p\neq2$, $($p-1$)$$}$ q \equiv \pm 1 $(mod p)$) \\ \mbox{($p=2$)} \\ \mbox{($p\neq2$, $($p-1$)$$}$ q \equiv \pm 1 $(mod p)$) \\ \mbox{($p=2$)} \\$

Theorem 6.

Type-(1, 1, 1) decompositions of M of Proposition 4 (3) is classified as follows:

 $\begin{cases} \text{exactly 2 ambient isotopy class} & (p = 2) \\ \text{exactly 3 ambient isotopy classes} & (p \neq 2, (p - 1)q \equiv \pm 1 \pmod{p}) \\ \text{exactly 6 ambient isotopy classes} & (p \neq 2, (p - 1)q \not\equiv \pm 1 \pmod{p}) \end{cases}$

Theorem 6.

Type-(1, 1, 1) decompositions of M of Proposition 4 (4) is classified as follows:

 $\begin{cases} \text{exactly 2 ambient isotopy class} & (p = 2) \\ \text{exactly 4 ambient isotopy classes} & (p \neq 2, (p - 1)q \equiv \pm 1 \pmod{p}) \\ \text{exactly 8 ambient isotopy classes} & (p \neq 2, (p - 1)q \not\equiv \pm 1 \pmod{p}) \end{cases}$

Theorem 6.

Type-(1, 1, 1) decompositions of M of Proposition 4 (5) is classified as follows:

15 / 36

- Let $H_1 \cup H_2 \cup H_3$ and $H'_1 \cup H'_2 \cup H'_3$ be two handlebody decompositions and $V_1 \cup V_2$ be the genus one Heegaard splitting.
 - We construct a genus one Heegaard splitting by handlebody decompositions.

- 4 目 ト 4 日 ト

- Let $H_1 \cup H_2 \cup H_3$ and $H'_1 \cup H'_2 \cup H'_3$ be two handlebody decompositions and $V_1 \cup V_2$ be the genus one Heegaard splitting.
 - We construct a genus one Heegaard splitting by handlebody decompositions.
 - **2** We see the embedding of F_{ij} in a solid torus of genus one Heegaard splitting.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Let $H_1 \cup H_2 \cup H_3$ and $H'_1 \cup H'_2 \cup H'_3$ be two handlebody decompositions and $V_1 \cup V_2$ be the genus one Heegaard splitting.
 - We construct a genus one Heegaard splitting by handlebody decompositions.
 - We see the embedding of F_{ij} in a solid torus of genus one Heegaard splitting.
 - We consider the ambient isotopy with keeping Heegaard surface.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Handlebody decompositions of the 3-sphere and lens spaces can be seen as genus one Heegaard splittings.

Lemma 1.

If $H_1 \cup H_2 \cup H_3$ is a type-(0,0,1) decomposition of the 3-sphere or a lens space M, ∂H_3 is a genus-one Heegaard surfaces of M.

17/36

Lemma 2.

Let $H_1 \cup H_2 \cup H_3$ be a type-(0, 1, 1) decomposition of the 3-sphere or a lens space M that satisfies either case (1) or case (2) of Proposition 2. Then, the following hold:

- If H₁ ∪ H₂ ∪ H₃ is a type-(0,1,1) decomposition of M that satisfies the conclusion of Proposition 2 (1), both ∂H₂ and ∂H₃ are genus-one Heegaard surfaces of M.
- If M is a lens space and H₁ ∪ H₂ ∪ H₃ is a type-(0, 1, 1) decomposition of M that satisfies the conclusion of Proposition 2 (2), exactly either ∂H₂ or ∂H₃ is a genus-one Heegaard surface of M
- If *M* is a 3-sphere and $H_1 \cup H_2 \cup H_3$ is a type-(0,1,1) decomposition of *M* that satisfies the conclusion of Proposition 2 (2), both ∂H_2 and ∂H_3 are genus-one Heegaard surfaces of *M*.

- 3

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

 H_1

 H_2

 H_3

(日) (四) (三) (三) (三)

Lemma 3.

Let $H_1 \cup H_2 \cup H_3$ be a type-(1, 1, 1) decomposition of a 3-sphere M that satisfies one of conclusion (2), (3), (4), or (5) of Proposition 3. Then, each of ∂H_i is a genus-one Heegaard surface for i = 1, 2, 3.

Lemma 4.

Let $H_1 \cup H_2 \cup H_3$ be a type-(1,1,1) decomposition of a lens space M that satisfies conclusion (2), (3), (4), or (5) of Proposition 3. Then, the following are satisfied.

- If H₁ ∪ H₂ ∪ H₃ is a type-(0,1,1) decomposition of M that satisfies conclusion (3), (4), or (5) of Proposition 3, exactly one of ∂H_i is a genus-one Heegaard surface of M, where i ∈ {1,2,3}.
- If H₁ ∪ H₂ ∪ H₃ is a type-(0,1,1) decomposition of M that satisfies conclusion (2) of Proposition 3, at most two of ∂H_i are genus-one Heegaard surfaces of M, where i ∈ {1,2,3}.

We consider the type-(0, 1, 1) decomposition such that $F_{12} \cong F_{13} \cong D \cup A$ and $F_{23} \cong P$. Let $V_1 \cup V_2$ be the genus one Heegaard splitting of the 3-sphere or lens space.

Figure: $H_3 = V_1$

 ▶
 ▲
 ≡
 ▶
 ≡
 ∽
 <</td>

 December 25, 2020
 22 / 36

Figure: $H_3 = V_2$

If $H_3 = V_1$ and $H'_3 = V_2$, we have to consider whether V_1 is isotopic to V_2 or not.

3

23 / 36

We can switch the solid tori of Heegaard splitting by ambient isotopy if the ambient manifold satisfies the following condition.

Lemma 5 (2).

Let M be a 3-sphere or a lens space L(p,q) and $V_1 \cup_{\varphi} V_2$ be a genus-one Heegaard splitting of M, where $\varphi : \partial V_2 \to \partial V_1$ is an orientation-reversing homeomorphism. The core of V_1 is isotopic to the core of V_2 in M if and only if M is either the 3-sphere or L(p,q) with $(p-1)q \equiv \pm 1 \pmod{p}$. We shall have to consider the embedding of $F_{12} \cong D \cup A$ to V_1 or V_2 . We prepare the following lemma

Lemma 6 (6).

Let V be a solid torus, D be a meridian disk of V, and A be an annulus properly embedded in V, which does not intersect D. Then, there are two embeddings of $D \cup A$ up to ambient isotopy if $D \cup A$ satisfies the following.

- $D \cup A$ cuts open V into a 3-ball B and a solid torus V' such that each of them does not have a self-intersection.
- $\partial(D \cup A)$ cuts open ∂V into an annulus A', a disk D', and a thrice-punctured sphere P.

Furthermore, these ambient isotopy classes are taken to each other by hyperelliptic involution on V.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

If there is an ambient isotopy which send V_1 to its-self by the hyperelliptic involution, two of the isotopy classes in a lemma above are isotopic each other in the ambient manifold.

The diffeotopy groups of lens spaces

The diffeotopy group $\mathcal{D}(M)$ of a 3-manifold M is the quotient of the diffeomorphism group Diff(M) by its normal subgroup $\text{Diff}_0(M)$.

 $V_1 \cup V_2$: a genus-one Heegaard splitting of a lens space L(p, q). $V_i = S^1 \times D^2 \subset \mathbb{C} \times \mathbb{C}$ for i = 1, 2.

Then, we consider the following three diffeomorphisms preserving the Heegaard surface $\partial V_1 = \partial V_2$.

- τ : an involution fixing each solid torus, defined as $\tau(u, v) = (\bar{u}, \bar{v})$ in each solid torus, where \bar{z} denotes the complex conjugated of z;
- σ_+ : an involution exchanging V_1 and V_2 , given by $\sigma_+: V_i \ni (u, v) \mapsto (u, v) \in V_j$ for $i \neq j$;
- σ_{-} : a diffeomorphism exchanging V_1 and V_2 , given by $\sigma_{-}: V_1 \ni (u, v) \mapsto (\bar{u}, v) \in V_2$ and $\sigma_{-}: V_2 \ni (u, v) \mapsto (u, \bar{v}) \in V_1$.

The diffeotopy groups of lens spaces

 $V_1 \cup V_2$: a genus-one Heegaard splitting of a lens space L(p, q). $V_i = S^1 \times D^2 \subset \mathbb{C} \times \mathbb{C}$ for i = 1, 2.

Then, we consider the following three diffeomorphisms preserving the Heegaard surface $\partial V_1 = \partial V_2$.

- τ : an involution fixing each solid torus, defined as $\tau(u, v) = (\bar{u}, \bar{v})$ in each solid torus, where \bar{z} denotes the complex conjugated of z;
- σ_+ : an involution exchanging V_1 and V_2 , given by $\sigma_+: V_i \ni (u, v) \mapsto (u, v) \in V_j$ for $i \neq j$;

 σ_{-} : a diffeomorphism exchanging V_1 and V_2 , given by $\sigma_{-}: V_1 \ni (u, v) \mapsto (\bar{u}, v) \in V_2$ and $\sigma_{-}: V_2 \ni (u, v) \mapsto (u, \bar{v}) \in V_1$.

Remark 2.

$$\tau|_{V_i}$$
 is the hyperelliptic involution. $\sigma_-^2 = \tau$.

Masaki OgawaSaitama University D1 (DC1) Classfication of handlebody decompositions or

Hodgeson, Rubstein and Bonahon determined such groups of lens spaces.

Theorem 7 (Hodgeson-Rubstein, Bonahon (1983)).

The diffeotopy group of lens space L(p,q) is isomorphic to the following:

•
$$\mathbb{Z}_2$$
, with generator σ_- , if $p = 2$;

- \mathbb{Z}_2 , with generator τ , if $q \equiv \pm 1 \mod p$ and $p \neq 2$;
- Z₂ ⊕ Z₂, with generator τ and σ₊, if q² ≡ +1 mod p and q ≢ ±1 mod p;
- \mathbb{Z}_4 , with generator σ_- , if $q^2 \equiv -1 \mod p$ and $p \neq 2$;
- \mathbb{Z}_2 , with generator τ , if $q^2 \not\equiv \pm 1 \mod p$.

We obtain the following lemma by a theorem above.

Lemma 7.

Let M be a 3-sphere or a lens space L(p,q) with a genus-one Heegaard splitting $V_1 \cup V_2$. M is a 3-sphere or a lens space L(p,q) with p = 2 if and only if M admits an ambient isotopy $F : M \times [0,1] \rightarrow M$ that satisfies the following:

- $F(V_1, 1) = V_1$ and $F(V_2, 1) = V_2$.
- Let $f_t(x) = F(x, t)$. Then, $f_1|_{\partial V_1} : \partial V_1 \to \partial V_1$ is a hyperelliptic involution in a mapping class group of a torus ∂V_1 .

the 3-sphere or p = 2

- we can assume $H_3 = V_2$ since the ambient manifold is the 3-sphere and L(2,1).
- we can isotope two embedding of *F*₁₂ into *V*₁ to each other by Lemma 7.
- \implies exactly one ambient isotopy classe.

$p \neq 2$ and $(p-1)q \equiv \pm 1 \pmod{p}$

- we can assume $H_3 = V_2$ since the ambient manifold satisfies $(p-1)q \equiv \pm 1 \pmod{p}$.
- we <u>can not</u> isotope two embedding of F_{12} into V_1 to each other by Lemma 7.
- \implies exactly two ambient isotopy classes.

Masaki OgawaSaitama University D1 (DC1) Classification of handlebody decompositions or

- 34

 $p \neq 2$ and $(p-1)q \not\equiv \pm 1 \pmod{p}$

イロト イポト イヨト イヨト

- 2

$p \neq 2$ and $(p-1)q \not\equiv \pm 1 \pmod{p}$

- we have to consider the cases $H_3 = V_2$ and $H_3 = V_1$ since the ambient manifold does not satisfies $(p 1)q \equiv \pm 1 \pmod{p}$.
- we <u>can not</u> isotope two embedding of F_{12} into V_1 to each other by Lemma 7.
- \implies exactly four ambient isotopy classes.

Masaki OgawaSaitama University D1 (DC1) Classfication of handlebody decompositions of

- J.C. Gómez-Larrañaga, 3-manifolds which are unions of three solid tori, Manuscripts Math. 59, (1987), 325-330.
- E J Brody, The topological classification of the lens space, Ann. Math, 71, (1960) 163-184.
- F Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968) 195-203.
 - F Bonahon, J-P Otal, Scindements, de Heegaard des espaces lenticulaires, Ann. Sei. Ecole Norm. Sup, 16 (1983), 451-466.
- C. Hodgeson, J. H. Rubstein , Involution and isotopies of lens spaces, Knot theory and manifold, Lecture note in math vol 1144 (1983).
- F Bonahon, Difféotopies des espaces lenticulaires, Topology, 22, (1983) 305-314.
- K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933), 189-194.

э

35 / 36

December 25, 2020

Masaki OgawaSaitama University D1 (DC1) Classfication of handlebody decompositions or

Y Ito and M. Ogawa, Decompositions of the 3-sphere and lens spaces with three handlebodies. arXiv:2012.11861 [math.GT] (2020)

36 / 36