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The main theme and remarks.

The main theme.

▶ Difference on singularities of fold maps, which are smooth
maps regarded as higher dimensional versions of
Morse functions, and difference of information of the
manifolds are closely related.

▶ Restrictions on topologies and differentiable
structures of manifolds admitting specific fold maps.

Morse functions?

Fundamental tools in so-called Morse theory and its
application to geometry of manifolds.

⇒ Singular points, appearing discretely, tell us information of
homology groups and some information on homotopy of a

manifold.
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Notation, terminologies and remarks.

m ≥ n ≥ 1 : integers
M : a closed, connected and smooth manifold of dimension m.
f : M → Rn : a smooth map.
A singular point p of f . ↔ A point p at which the rank of
differential df P drops or the rank of this is smaller than
min{m, n}.
S(f ) : the set of all singular points (the singular set) of f .
f (S(f )) (Rn − f (S(f ))): the singular (resp. regular) value set.

A singular (regular) value of f . ↔ A point (resp. not) in

f (S(f )).

Manifolds, maps between them and bundles whose
fibers are manifolds are smooth (of class C∞) and
(boundary) connected sums etc. are discussed in
the smooth category unless otherwise stated.



Fold maps.



Fold maps.

Definition 1
f is a fold map.
↔ At each singular point p f is of the form

(x1, · · · , xm) 7→ (x1, · · · , xn−1,
∑m−i(p)

k=n xk
2 −

∑m
k=m−i(p)+1 xk

2)

for an integer 0 ≤ i(p) ≤ m−n+1
2 .

n = 1 case (where the target space is the line). ↔ f is a Morse function.

Proposition 1

1. The integer i(p) is unique (we call i(p) the index of p).
(f : special generic ↔ f is a fold map s.t. i(p) = 0 for each p)

2. The set of all singular points of an index is a closed submanifold of
dimension n − 1 with no boundary and f |S(f ) is an immersion.

The function case. → The number of singular points of an index (defined
by respecting the orientation of the target and defined uniquely) tells us
about homology groups (the classical theory of Morse functions).



Fundamental remarks on fold maps.

A fold map from a surface into the plane.

↓

Singular  points.

The projection to the plane.

Figure 1: A local form of a fold map from a surface into the plane.

Existence of fold maps into general Euclidean spaces.

▶ A closed manifold whose dimension is greater than or equal to 2
admits a fold map into the plane if and only if the Euler number is
even (1950–60s: Thom and Whitney (Levine)).

▶ A closed manifold of dimension m admits a fold map into Rn if the
Whitney sum of the tangent bundle and a trivial real line bundle
over the manifold is trivial for m ≥ n ≥ 1 (”if” is replaced by ”if and
only if” for the case m = n) (1970s: Eliashberg).



Special generic maps restrict the
topologies and the differentiable
structures of the manifolds.



Fundamental notes on special generic maps.
Special generic functions (n = 1 case where the target space is the line).

Special generic functions on closed and connected manifolds characterize
spheres topologically except 4-dim. cases. In 4-dim. cases, these maps
characterize S4 as smooth manifolds. ⇒ So-called Reeb’s theorem.

Simplest special generic maps.

・ Canonical projections of unit spheres are special generic: the singular
sets are spheres and the restrictions to the singular sets are embeddings.

・ A manifold M represented as a connected sum of the manifolds in
{S lj × Sm−lj}lj=1 satisfying 1 ≤ lj ≤ n − 1 admits a special generic map f
into Rn such that f |S(f ) is an embedding and that f (M) is represented as

a boundary connected sum of manifolds in a family {S lj × Dn−lj}.

↓

Figure 2: A canonical projection of a unit sphere and the image of a special
generic map into R2 (the restrictions to the singular sets are embeddings).



Special generic maps on homotopy spheres.

Fact 1

1. (1993 Saeki.)
Homotopy spheres whose dimensions are greater than or equal to 2
which are not diffeomorphic to 4-dim. homotopy spheres
non-diffeomorphic to S4 admit special generic maps into the plane.

2. (1960s Calabi, 1993 Saeki, and so on.) m-dim. homotopy spheres
non-diffeomorphic to standard spheres admit no special generic
map into Rn for n = m − 3,m − 2,m − 1 where m ≥ 4.

3. (Wrazidlo 2017–8.) 7-dim. oriented homotopy spheres of at least 14
types of all the 28 types admit no special generic map into R3.

Special generic maps restrict the differentiable structures of the
homotopy spheres in considerable cases.



Special generic maps restrict the topologies and the
differentiable structures of the manifolds.

Fact 2

1. (Saeki 1993.) Let m ≥ 2. An m-dim. closed and connected manifold
admits a special generic map into R2 iff it is represented as a
connected sum of the total space of a smooth bundle over the circle
whose fiber is an (m − 1)-dim. homotopy sphere admitting a special
generic function.

2. (2000s- Saeki, Sakuma, and so on.) There exist pairs of
4-dimensional closed and connected manifolds satisfying the
following three.

2.1 Two manifolds of each pair are mutually homeomorphic.
2.2 Both of each pair admit fold maps into R3.
2.3 Exactly one manifold of each pair admits a special generic map into

R3.

Special generic maps restrict the topologies and the differentiable
structures of the manifolds in considerable cases.



Round fold maps and round fold
maps into R4 on 7-dimensional

homotopy spheres.



Round fold maps.
x ∈ Rk : ||x || denotes the distance between x and the origin 0 where the
space is endowed with the Euclidean metric.

Definition 2 (2013– K)

A fold map f : M → Rn is round. ↔ Either of the following holds.

1. n = 1, f |S(f ) is an embedding and ∃a ∈ Rn a regular value

∃(Φ : f −1((−∞, a])→ f −1([a,∞)), ϕ : (−∞, a]→ [a,∞)) a pair of
diffeomorphisms s.t. f |f −1([a,∞)) ◦ Φ = ϕ ◦ f |f −1((−∞,a]).

2. n ≥ 2, f |S(f ) is an embedding and ∃ϕ a diffeomorphism on Rn,

∃l > 0 an integer s.t. ϕ(f (S(f ))) = {||x || = r | r ∈ N, 1 ≤ r ≤ l}.

▶ n = 1. → So-called (twisted) doubles of Morse functions: e. g. the
Morse functions characterizing spheres topologically.

▶ n ≥ 2. → A fold map whose singular value set is a disjoint union of
spheres embedded concentrically.
→ Canonical projections of unit spheres, special generic maps into
the plane whose singular value sets are embedded circles (, which
were constructed in Fact 1 (1),) etc. are round.



Monodromies for round fold maps.

Definition 3 (2013– K)

f : M → Rn : a round fold map.

1. f is said to have a globally trivial monodromy.
↔ n = 1
or
n ≥ 2 and for a diffeomorphism ϕ on Rn and an integer l > 0 s.t.
ϕ(f (S(f ))) = {||x || = r | r ∈ N, 1 ≤ r ≤ l}, the composition of the
restriction of ϕ ◦ f to ϕ ◦ f −1({||x || = r | 12 ≤ r}) with a canonical
map defined by x 7→ 1

||x||x gives a trivial bundle over the unit sphere.

2. f is said to have a componentwisely trivial monodromy.
↔ n = 1
or
n ≥ 2, and for a diffeomorphism ϕ on Rn and an integer l > 0 s.t.
ϕ(f (S(f ))) = {||x || = r | r ∈ N, 1 ≤ r ≤ l}, the composition of the
restriction of ϕ ◦ f to ϕ ◦ f −1({||x || = r | k − 1

2 ≤ r ≤ k + 1
2}) for

each integer 1 ≤ k ≤ l with a canonical map defined by x 7→ 1
||x||x

gives a trivial bundle over the unit sphere.



Monodromies for round fold maps (figures).

The restriction of 

to the preimage

The innermost connected 

component
of the singular value set.

of this 

interval.

Figure 3: The image of a round
fold map f : M → Rn having a
globally trivial monodromy:
the restriction of f to the
preimage of the complementary
set of the interior of an n-dim.
standard closed disc in the
connected component of the
regular value set in the center
is represented as a product map
of a Morse function and idSn−1 .

The restriction of 

to the preimage

of the interval.

Figure 4: The image of a round
fold map f having a
componentwisely trivial
monodromy: the restriction of
f to the preimage of a small
closed tubular neighborhood
(,represented as the annulus
bounded by the disjoint union
of two dotted red circles,) of
each connected component C
of the singular value set is
represented as a product map
of a Morse function and idSn−1 .



Examples on the monodromies.

▶ Canonical projections of unit spheres, special generic maps into the
plane whose singular value sets are embedded circles etc. have
globally trivial monodromies.

▶ (2014– K)
∃ infinitely many round fold maps on infinitely many manifolds

not having globally trivial monodromies
&

having componentwisely trivial monodromies.



Round fold maps on manifolds represented as connected
sums of total spaces of Sk-bundles over Sn (k > 0).

Theorem 1 (2013–4 K)

m > n ≥ 1.
M : an m-dim. manifold represented as a connected sum of l > 0 total
spaces of Sm−n-bundles over Sn.
→ ∃ f : M → Rn : a round fold map having a componetwisely trivial
monodromy s. t.

1. The index of each singular point is 0 or 1. The number of singular
points is 2(l + 1) for n = 1 and that of connected components of
the singular set is l + 1 for n ≥ 2.

2. Preimages of regular values are disjoint unions of copies of Sm−n

and the numbers of the connected components of preimages of
regular values in the center are l + 1.

Remark 1 (2013–4 K)

In Theorem 1 ”←” also holds for ”m ≥ 2n” or ”l = 1 and round fold
maps having a globally trivial monodromy”.



A sketch of a proof of Theorem 1 for ”l = 1 and round
fold maps having a globally trivial monodromy”.

More generally, we can take the fiber as a homotopy sphere Σ
admitting a special generic function.

The restriction of 

to the preimage 
of this interval.

Figure 5: The image (singular value set), preimages of regular values, etc. of a
round fold map in Theorem 1 for ”l = 1 · · · ’’.

▶ On the preimage of the straight line in the figure, it is a Morse
function with exactly two singular points on a cylinder.

▶ M is regarded as a maifold obtained by gluing the two manifolds
Dn × (Σ⊔Σ) (the preimage of the disc bounded by the dotted circle
in the figure) and Sn−1 × Σ× I via a bundle isomorphism between
the trivial bundles over ∂Dn = Sn−1 (∂Dn and Sn−1 are identified in
a canonical way) whose fibers are Σ ⊔ Σ.



An interesting example closely related to 7-dim. homotopy
spheres.

Thanks to the classical theory of exotic spheres of Milnor, related theory
of Eells and Kuiper, more general theory of Kervaire etc. · · · .
1. There are exactly 28 types of 7-dim. oriented homotopy spheres.

2. These oriented homotopy spheres of 16 types of the 28 types
including the standard sphere are represented as total spaces of
S3-bundles over S4.

3. Oriented homotopy spheres of the remaining 12 types cannot be
represented as before and are represented as connected sums of two
of these spheres.

Corollary 1 (2013–4 K)

M : a 7-dim. homotopy sphere. → We can apply Theorem 1 for
(m, .n) = (7, 4).

Remark 2
14 of the 28 types in Fact 1 presented before come from a different
viewpoint.



Remarks etc. on Corollary 1.

Figure 6: The images of round fold maps of Corollary 1: circles represent
connected components of singular value sets and copies of S3, S3 etc.
represent preimages of regular values and 0 and 1 represent indices of singular
points. The descriptions of the 7-dim. manifolds are for manifolds admitting
the presented maps.

Differentiable structures are affected by topological properties
of maps of an explicit class (in the class of special generic

maps these phenomena have been explicitly
well-known).



Explicit fold maps on explicit m-dim.
closed and simply-connected

manifolds and their singularities
(m ≥ 7).



Let’s construct explicit fold maps on 7-dim. closed and
simply-connected manifolds.

Problem 1
Can we obtain 7-dim. and general higher dimensional closed and
simply-connected manifolds of wider classes and understand them in
more geometric and constructive ways via fold maps?

Existing algebraic and abstract studies.

▶ The classification via sophisticated algebraic topological methods
such as homotopy theory, surgery theory, and so on (around the
1950s–60s).

▶ Recent studies on 7-dim. closed and simply-connected manifolds
(whose second integral homology groups are free) via concrete
algebraic topology: the 2000s–2010s Crowley, 2018 Kreck, Wang
etc..

It is difficult to understand these manifolds in
constructive ways due to the constraint that the

dimensions are high and general.



A result on fold maps and cohomology rings of manifolds.

Theorem 2 (2019–20 K)

A, B, C : free commutative groups of rank a,b and c.
{ai,j}aj=1 : a sequence of integers (1 ≤ i ≤ b: integer). p ∈ B ⊕ C.
(hi,j) : a symmetric b × b matrix such that the (i , j)-th component is an
integer satisfying hi,i = 0 for 1 ≤ i ≤ b.
→ ∃M : a 7-dim. closed and simply-connected manifold whose total SW
class is 1 ∈ H0(M;Z/2Z) ∃f : M → R4 : a fold map s.t.

1. H∗(M;Z) is free. H2(M;Z) ∼= A⊕ B and H4(M;Z) ∼= B ⊕ C (we
fix suitable identifications) and the following properties hold.

1.1 Products of elements in A⊕ {0} ⊂ H2(M;Z) vanish.
1.2 Consider a suitable basis {(aj∗, 0)}aj=1 of A⊕ {0} ⊂ H2(M;Z) and a

suitable basis {(0, bj∗)}bj=1 of {0} ⊕ B ⊂ H2(M;Z). The product of
(aj1

∗, 0) and (0, bj2
∗) is regarded as

(aj2,j1bj2
∗, 0) ∈ B ⊕ {0} ⊂ H4(M;Z). The product of (0, bj1

∗) and
(0, bj2

∗) is regarded as (hj1,j2bj1
∗ + hj2,j1bj2

∗, 0) ∈ H4(M;Z).
2. The 1st Pontryagin class of M is 4p ∈ H4(M;Z).
3. The index of each singular point of f is 0 or 1 and preimages of

regular values are disjoint unions of at most 3 copies of S3.



Remarks etc. on Theorem 2.
We can change the 3rd property if (hj1,j2) is the zero matrix as follows:
f |S(f ) is an embedding, and preimages of regular values are disjoint

unions of at most 2 copies of S3.

Corollary 2 (2020 K)

The class of the 7-dim. manifolds obtained in Theorem 2 is wider than
the class of the 7-dim. manifolds obtained above.

▶ (2020 K) Similar theorems where the pairs of the dimensions are
general ( ̸= (7, 4)) assuming additional suitable conditions.

Theorem 3 (2020 K)

∃{Mj}j∈N : a family of infinitely many 7-dim. spin, closed and
simply-connected manifolds whose integral cohomology rings are
isomorphic to H∗(CP2 × S3;Z), which are mutually
non-homeomorphic, which we cannot obtain in Theorems 1–2 and
which admit round fold maps into R4.

The main result of Wang’s preprint in 2018 improves as follows: {Mj}
contains all 7-dim. spin, closed and simply-connected manifolds whose
integral cohomology rings are isomorphic to H∗(CP2 × S3;Z).



Special generic maps revisited (known results).

Theorem 4 (1993 Saeki, 2015 Nishioka. etc..)

Let m = 4, 5. m-dim. manifolds represented as connected sums of total
spaces of Sm−2-bundles over S2 are characterized as closed and
simply-connected ones admitting special generic maps into R3 (if m = 5
we can replace 3→ 4).
Furthermore, closed and simply-connected manifolds of dim. m > 4
whose 2nd integral homology groups are not free admit no special
generic map into R4.



How special generic maps restrict the topologies.

Theorem 5 (2019–20 K.)

In Theorem 2, if at least one number of {ai,j} is non-zero, the matrix is
not zero, or p ̸= 0 holds, then M admits no special generic map into R4.

Theorem 6 (2020 K)

∃{(Mj.1,Mj,2)} : infinitely many pairs of 9-dimensional closed and
simply-connected manifolds satisfying the following properties.

1. The integral homology groups of Mj,1 and Mj,2 are isomorphic. For
distinct j ’s, the corresponding homology groups are not isomorphic.

2. The k-th Stiefel Whitney classes and the k-th Pontryagin classes of
Mj,i vanish for k ≥ 1.

3. The rational cohomology rings of Mj,1 and Mj,2 are isomorphic to
that of a manifold represented as a connected sum of manifolds
represented as products of two spheres.

4. Mj,1 admits a special generic map into R5, admitting no special

generic map into Rn′ for 1 ≤ n′ ≤ 4. Mj,2 admits a special generic

map into R6, admitting no special generic map into Rn′ for
1 ≤ n′ ≤ 5.



Conclusions and future problems.



Conclusions and future problems.
▶ Difference on singularities of fold maps and difference of information

of the manifolds are closely related.

▶ Topologies and differentiable structures of manifolds admitting
specific fold maps such as some special generic maps are restricted.

Problem 2
Find meaningful examples more. Moreover, study such phenomena from
a general viewpoint.

Related to this problem, it is still a fundamental and difficult problem and
also a new and interesting problem to understand higher dimensional
closed and connected manifolds in constructive ways.

Problem 3
Can we do more effective construction of explicit fold maps and more
general generic smooth maps (into lower dimensional spaces) and
manifolds admitting them?

Thank you.



Appendices.



A sketch of a proof of Theorem 2 for the case where (hj1,j2)
is the zero matrix (for b = 1).

⤵

Take a 2-dim. 

sphere 

representing 

Deform the map around 

the embedded sphere.

.

where 

is a small closed tubular

neighborhood of a

circle.

represents

Figure 7: A proof of Theorem 2 where (hj1,j2) is the zero matrix: the left figure
shows the image of a special generic map f0 on a manifold M0 represented as a
connected sum of a copies of S2 × S5 into R4: f0(M0) is represented as a
boundary connected sum of a copies of S2 × D2 where {aj} generates
H2(M0;Z) and also H2(f0(M0);Z) in a canonical way (ai

∗ is regarded as the
dual of ai and bi

∗ is regarded as the dual of bi ). S
3, S3 ⊔ S3 etc. represent

preimages of regular values.



A round fold map in Theorem 3.

Figure 8: The image (singular value set) and preimages of a round fold map
into R4 of Theorem 3.

To obtain such maps on all spin, closed and simply-connected manifolds
whose integral cohomology rings are isomorphic to that of CP2 × S3, we
need a result of Wang’s preprint in 2018 (we do not need this to obtain

some).


