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4-manifolds admitting simplified (2,0)-trisections with prescribed vertical 3-manifolds

fold/cusp singularities

X : a closed oriented connected smooth 4-manifold,
f : X → R2 : smooth map and p ∈ Sing( f ),

p is an indefinite fold singularity
⇔ ∃ local coord. (t,x,y,z) around p s.t. f (t,x,y,z) = (t,−x2 − y2 + z2)．

p is a definite fold singularity
⇔ ∃ local coord. (t,x,y,z) around p s.t. f (t,x,y,z) = (t,−x2 − y2 − z2)．

p is a cusp singularity
⇔ ∃ local coord. (t,x,y,z) around p s.t. f (t,x,y,z) = (t,x3 −3xt + y2 − z2)．
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the images of indefinite fold

the image of cusp

c is called a vanishing cycle
associated with γ .

γ is called a reference path.
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fold/cusp singularities

X : a closed oriented connected smooth 4-manifold, f : X → R2 : smooth
map and p ∈ Sing( f ),

p is an indefinite fold singularity
⇔ ∃ local coord. (t,x,y,z) around p s.t. f (t,x,y,z) = (t,−x2 − y2 + z2)．

p is definite fold singularity
⇔ ∃ local coord. (t,x,y,z) around p s.t. f (t,x,y,z) = (t,−x2 − y2 − z2)．

p is a cusp singularity
⇔ ∃ local coord. (t,x,y,z) around p s.t. f (t,x,y,z) = (t,x3 −3xt + y2 − z2)．
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the vanishing cycles a and b intersect
at one point transversely.
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(g,k)-trisection mappings [Gay-Kirby，2016]

a smooth mapping f : X → R2 is a (g,k)-trisection map．(g ≥ k ≥ 0)
⇔ f (Sing( f )) is as in the figure．

p0

k

g

radial tangency

the most outer red circle· · ·definite fold
singular value．

the solid curves· · · indefinite fold singular
value．

the cusped points· · ·cusp singular value．

three white boxes· · ·consists of indefi-
nite fold images with transverse double
points but without “radial tangencies".

f−1(p0) is a closed oriented surface of
genus g.

Theorem (Gay-Kirby，2016)

For any 4-manifolds X , there is a (g,k)-trisection map.
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Simplified (g,k)-trisection mappings [Baykur-Saeki，2017]

f : X → R2：a (g,k)-trisection map is simplified．
⇔ f (Sing( f )) is as in the figure．

Theorem (Baykur-Saeki，2017)

For any 4-manifold X , there is a simplified (g,k)-trisection map.
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Classification

g = 1(easy)

X ≃±CP2,S1 ×S3.

g = 2 [Meier-Zupan, 2017]

X has a (2,0)-trisection. ⇔ X ≃ S2 ×S2,±CP2♯±CP2

X has a (2,1)-trisection. ⇔ X ≃ S1 ×S3♯±CP2．
X has a (2,2)-trisection. ⇔ X ≃ ♯2(S1 ×S3).

[Meier-Zupan, 2017] [Baykur-Saeki, 2017]

X has a simplified (2,0)-trisection. ⇔ X ≃ S2 ×S2,±CP2♯±CP2

X has a simplified (2,1)-trisection. ⇔ X ≃ S1 ×S3♯±CP2．
X has a simplified (2,2)-trisection. ⇔ X ≃ ♯2(S1 ×S3).
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Theorem (Kobayashi, 2013)

(1) There exists a stable map fp : S2 ×S2 → R2 with the following singular
value set such that

f−1
p (ω) = L(2p,1)

In particular, p ̸= q =⇒ fp and fq are NOT right-left equivalent.

(2) There exists a stable map gp : CP2#CP2 → R2 with the following
singular value set such that

g−1
p (ω) = L(2p−1,1)

In particular, p ̸= q =⇒ gp and gq are NOT right-left equivalent.

ω
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Simplified (2,0)-trisection

γac

γba

γcb

γaa

γbb

γcc

Question.

What is the 3-manifold Vi j = f−1(γi j) ?

What is the 4-manifold ?

Note: The 6-tuple

(
Vaa Vbb Vcc
Vba Vcb Vac

)
=

(
S1 ×S2 S1 ×S2 S1 ×S2

S3 S3 S3

)
is

called a trivial 6-tuple. We exclude the trivial 6-tuple from our discussion.
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Theorem (A. 2019)

The non-trivial 6-tuple

(
Vaa Vbb Vcc
Vba Vcb Vac

)
is one of the following up to

reflection:(
S3 S3 L((q−1)2,q−1+ ε)

S1 ×S2 L(q−2,ε) L(q,−ε)

)
,

(
S3 L(9,2ε) L(4,ε)

L(2,1) L(5,ε) S3

)
,

(
S1 ×S2 S3 S3

S3 L(1+ ε,1) S3

)
,

(
S1 ×S2 L(4,1) L(4,1)

S3 L(4+ ε,1) S3

)
,

where q ̸= 1 and ε ∈ {−1,1}.

γac

γba

γcb

γaa

γbb

γcc
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Main Theorem

f : X → R2 : a simplified (2,0)-trisection map. The 4-manifold X is
determined by the 6-tuples as follows:

(1)

(
S3 S3 L((q−1)2,q−1+ ε)

S1 ×S2 L(q−2,ε) L(q,−ε)

)
=⇒ X =

{
S2 ×S2 if q is even

CP2#CP2 if q is odd and q ̸= 1
.

(2)

(
S3 L(9,2ε) L(4,ε)

L(2,1) L(5,ε) S3

)
=⇒ X =

{
CP2#CP2 if ε =−1

CP2#CP2 if ε = 1

(3)

(
S1 ×S2 L(4,1) L(4,1)

S3 L(4+ ε,1) S3

)
=⇒ X =

{
CP2#CP2 if ε = 1

CP2#CP2 if ε =−1.

(4)

(
S1 ×S2 S3 S3

S3 S1 ×S2 S3

)
=⇒ CP2#CP2.

(5)

(
S1 ×S2 S3 S3

S3 L(2,1) S3

)
=⇒ CP2#CP2 or CP2#CP2.
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(1)

(
S3 S3 L((q−1)2,q−1+ ε)

S1 ×S2 L(q−2,ε) L(q,−ε)

)
=⇒ X =

{
S2 ×S2 if q is even

CP2#CP2 if q is odd and q ̸= 1
.

(2)

(
S3 L(9,2ε) L(4,ε)

L(2,1) L(5,ε) S3

)
=⇒ X =

{
CP2#CP2 if ε =−1

CP2#CP2 if ε = 1

(3)

(
S1 ×S2 L(4,1) L(4,1)

S3 L(4+ ε,1) S3

)
=⇒ X =

{
CP2#CP2 if ε = 1

CP2#CP2 if ε =−1.

(4)

(
S1 ×S2 S3 S3

S3 S1 ×S2 S3

)
=⇒ CP2#CP2.

(5)

(
S1 ×S2 S3 S3

S3 L(2,1) S3

)
=⇒ CP2#CP2 or CP2#CP2.

Corollary.

The non-trivial 6-tuple determines the 4-manifold unless it is(
S1 ×S2 S3 S3

S3 L(2,1) S3

)
. In this exceptional case, the 4-manifold is

determined up to orientation reversing diffeomorphisms.
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γac

γba

γcb

γaa

γbb

γcc

Remark.

The trivial 6-tuple

(
S1 ×S2 S1 ×S2 S1 ×S2

S3 S3 S3

)
=⇒ X = CP2#CP2, CP2#CP2 or CP2#CP2.

In particular, the 4-manifold of a trivial 6-tuple is NOT uniquely determined
even if it is up to orientation reversing diffeomorphisms.
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p1 ∈ R2, f−1(p1)≃ a torus T 2

γµ : the circle as shown in the figure.
µ : T 2 → T 2 :monodromy associated with γµ .

Lemma (Hayano, 2017)

p1 p1

γµ

ea

eb ec

a

b c

µ is either (1), (2) or (3).

(1) µ = idT 2

(2) µ = (a Dehn twist)

(3) µ = (a Dehn twist)4
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Proof of the Main Theorem

The proof is done according to the following steps.

1. Classification of the 6-tuples
(A) d is not parallel to any of a,b and c
(B) d is parallel to one of a,b and c

where d is the curve for the monodromy along γµ

2. Draw a Kirby diagram for each 6-tuple

p1 p1

γµ

ea

eb ec

a

b c
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If µ is not the identity map, then we can divide the discussion into the
following two cases depending on the mutual positions of vanishing cycles:

(A) d is not parallel to any of a,b and c.

(B) d is parallel to one of a,b and c.

Lemma (Hayano, 2017)

Suppose that µ is not the identity map. Then the following hold:

If d is in case (A), then one of a,b,c intersects d once transversely.

If µ = t±4
d , then d is in case (B).
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(1)

(
S3 S3 L((q−1)2,q−1+ ε)

S1 ×S2 L(q−2,ε) L(q,−ε)

)
=⇒ X =

{
S2 ×S2 if q is even

CP2#CP2 if q is odd and q ̸= 1
.

Sketch of the proof :
The 6-tuple can happen when it is in Case (A) and Vba = S1 ×S2.
Since it is in Case (A), µ = t±1

d and d intersects a2 once.
If µ = td , we can take vanishing cycles as follows :

p

p1

a2
a′2

c′2

c2b2

[a2] =

(
1
0

)
, [b2] =

(
0
1

)
, [c′2] =

(
−1
q

)
,

[a′2] = [t∓1
d (a2)] =

(
0
±1

)
, [d] =

(
r
1

)
.

(∵ a2 and b2 (resp. b2 and c′2, etc...) vanish at the same cusp.)
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Since this case is Case (A), we can deform f so that the singular value set
has a four cusped circle as follows.

a2 a′2
a2

a′2

b2

b2

c′2 c′2

p

p1

a2
a′
2

c′2

c2b2 d

[a2] =

(
1
0

)
, [b2] =

(
0
1

)
, [c′2] =

(
−1
q

)
,

[a′2] = [t∓1
d (a2)] =

(
0
±1

)
, [d] =

(
r
1

)
.
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[a2] =

(
1
0

)
, [b2] =

(
0
1

)
, [c′2] =

(
−1
q

)
, [a′2] = [t∓d (a2)] =

(
0
±1

)
.

We obtain the following Kirby diagram of X (Case : q > 0):

0 0
0 q

q
c′2

a2

b2

a′
20
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(2)

(
S3 L(9,2ε) L(4,ε)

L(2,1) L(5,ε) S3

)
=⇒ X =

{
CP2#CP2 if ε =−1

CP2#CP2 if ε = 1

Sketch of the proof :
The 6-tuple can happen when it is in Case (A) and Vba and Vac are not
S1 ×S2.
Since it is in Case (A), µ = t±1

d and d intersects a2 once.
If µ = td , we can take vanishing cycles as follows :

p

p1

a2
a′2

c′2

c2b2

[a2] =

(
1
0

)
, [b2] =

(
0
1

)
, [c′2] =

(
−1
q

)
,

[a′2] = [t∓1
d (a2)] =

(
p
±1

)
, [d] =

(
r
1

)
.

From the fact that Vba and Vac are not S1 ×S2, it is either

(i) p =−1 and [c′2] =
(
−1
±2

)
or (ii) p =−2 and [c′2] =

(
−1
±1

)
.
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Apply the deformation as in (1).

a2 a′2
a2

a′2

b2

b2

c′2 c′2

p

p1

a2
a′
2

c′2

c2b2 d

Case (i) :

[a2] =

(
1
0

)
, [b2] =

(
0
1

)
, [c′2] =

(
−1
±2

)
,

[a′2] = [t∓1
d (a2)] =

(
−1
±1

)
, [d] =

(
∓2
1

)
.
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[a2] =

(
1
0

)
, [b2] =

(
0
1

)
, [c′2] =

(
−1
±2

)
, [a′2] = [t∓1

d (a2)] =

(
−1
±1

)
.

We obtain the following Kirby diagram of X :

0 0
0

−2 c′2

a2

b2

a′
2−1

0 0
0

2 c′2

a2

b2

a′
21
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(3)

(
S1 ×S2 L(4,1) L(4,1)

S3 L(4+ ε,1) S3

)
=⇒ X =

{
CP2#CP2 if ε = 1

CP2#CP2 if ε =−1.

Sketch of the proof :
The 6-tuple in Case (3) only appears in Case (B) with µ = t±4

d . We have.
Since it is in Case (B), d and a2 are disjoint on f−1(p1).
We can take vanishing cycles as follows :

p

p1

a2
a′2

c′2

c2b2 [a2] =

(
1
0

)
, [b2] =

(
0
1

)
, [c′2] =

(
−1
ε2

)
where ε2 ∈ {−1,1}, and ε2 =∓ε .

µ = t4
d ↔ CP2 ε2 =−1 ↔ CP2

µ = t−4
d ↔ CP2 ε2 = 1 ↔ CP2
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(4)

(
S1 ×S2 S3 S3

S3 S1 ×S2 S3

)
=⇒ CP2#CP2.

(5)

(
S1 ×S2 S3 S3

S3 L(2,1) S3

)
=⇒ CP2#CP2 or CP2#CP2.

Sketch of the proofs of (4) and (5):
In Case (4), the 6-tuple appears in Case (B) with µ = t±1

d and ±ε2 = 1.

Hence X is CP2#CP2 by the same observation as in Case (3).

In Case (5), the 6-tuple appears in Case (B) with µ = t±1
d and ±ε2 =−1.

Hence X is CP2#CP2 if ε2 =−1, where µ = td , and CP2#CP2 if ε2 = 1,
where µ = t−1

d .


