4-manifolds admitting simplified (2,0)-trisections with prescribed vertical 3-manifolds

Nobutaka ASANO D2 (Tohoku Univ.)

結び目の数理 Ⅲ 東京女子大学 2020/12/26

fold/cusp singularities

X: a closed oriented connected smooth 4-manifold,

- $f: X \to \mathbf{R}^2$: smooth map and $\mathbf{p} \in \operatorname{Sing}(f)$,
 - \blacksquare **p** is an indefinite fold singularity

 $\Leftrightarrow \exists$ local coord. (t, x, y, z) around **p** s.t. $f(t, x, y, z) = (t, -x^2 - y^2 + z^2)$.

- **p** is a definite fold singularity $\Leftrightarrow \exists$ local coord. (t,x,y,z) around **p** s.t. $f(t,x,y,z) = (t, -x^2 - y^2 - z^2)$.
- **p** is a cusp singularity

 $\Leftrightarrow \exists \text{ local coord.} (t, x, y, z) \text{ around } \mathbf{p} \text{ s.t. } f(t, x, y, z) = (t, x^3 - 3xt + y^2 - z^2).$

- *c* is called a vanishing cycle associated with *γ*.
- γ is called a reference path.

fold/cusp singularities

X: a closed oriented connected smooth 4-manifold,

- $f: X \to \mathbf{R}^2$: smooth map and $\mathbf{p} \in \operatorname{Sing}(f)$,
 - **p** is an indefinite fold singularity

 $\Leftrightarrow \exists$ local coord. (t, x, y, z) around **p** s.t. $f(t, x, y, z) = (t, -x^2 - y^2 + z^2)$.

- **p** is a definite fold singularity $\Leftrightarrow \exists$ local coord. (t,x,y,z) around **p** s.t. $f(t,x,y,z) = (t, -x^2 - y^2 - z^2)$.
- **p** is a cusp singularity

 $\Leftrightarrow \exists \text{ local coord.} (t, x, y, z) \text{ around } \mathbf{p} \text{ s.t. } f(t, x, y, z) = (t, x^3 - 3xt + y^2 - z^2).$

fold/cusp singularities

X: a closed oriented connected smooth 4-manifold, $f:X\to {\bf R}^2$: smooth map and ${\bf p}\in {\rm Sing}(f),$

- **p** is an indefinite fold singularity $\Leftrightarrow \exists$ local coord. (t,x,y,z) around **p** s.t. $f(t,x,y,z) = (t, -x^2 - y^2 + z^2)$.
- **p** is definite fold singularity $\Leftrightarrow \exists$ local coord. (t, x, y, z) around **p** s.t. $f(t, x, y, z) = (t, -x^2 - y^2 - z^2)$.
- **p** is a cusp singularity

 $\Leftrightarrow \exists \text{ local coord. } (t, x, y, z) \text{ around } \mathbf{p} \text{ s.t. } f(t, x, y, z) = (t, x^3 - 3xt + y^2 - z^2).$

the images of indefinite fold

the vanishing cycles a and b intersect at one point transversely.

the image of cusp

(g,k)-trisection mappings [Gay-Kirby, 2016]

a smooth mapping $f: X \to \mathbf{R}^2$ is a (g, k)-trisection map. $(g \ge k \ge 0)$ $\Leftrightarrow f(\operatorname{Sing}(f))$ is as in the figure.

- the most outer red circle...definite fold singular value.
- the solid curves...indefinite fold singular value.
- the cusped points · · · cusp singular value.
- three white boxes...consists of indefinite fold images with transverse double points but without "radial tangencies".
- f⁻¹(p₀) is a closed oriented surface of genus g.

Theorem (Gay-Kirby, 2016)

For any 4-manifolds X, there is a (g,k)-trisection map.

Simplified (g,k)-trisection mappings [Baykur-Saeki, 2017]

 $f: X \to \mathbf{R}^2$: a (g,k)-trisection map is simplified. $\Leftrightarrow f(\operatorname{Sing}(f))$ is as in the figure.

Theorem (Baykur-Saeki, 2017)

For any 4-manifold *X*, there is a simplified (g,k)-trisection map.

 $\underline{g=1}(easy)$

 $X \simeq \pm \mathbf{CP}^2, S^1 \times S^3.$

g = 2 [Meier-Zupan, 2017]

X has a (2,0)-trisection. $\Leftrightarrow X \simeq S^2 \times S^2, \pm \mathbb{CP}^2 \sharp \pm \mathbb{CP}^2$ *X* has a (2,1)-trisection. $\Leftrightarrow X \simeq S^1 \times S^3 \sharp \pm \mathbb{CP}^2$. *X* has a (2,2)-trisection. $\Leftrightarrow X \simeq \sharp^2(S^1 \times S^3)$.

[Meier-Zupan, 2017] [Baykur-Saeki, 2017]

X has a simplified (2,0)-trisection. $\Leftrightarrow X \simeq S^2 \times S^2, \pm \mathbb{CP}^2 \sharp \pm \mathbb{CP}^2$ *X* has a simplified (2,1)-trisection. $\Leftrightarrow X \simeq S^1 \times S^3 \sharp \pm \mathbb{CP}^2$. *X* has a simplified (2,2)-trisection. $\Leftrightarrow X \simeq \sharp^2(S^1 \times S^3)$.

Theorem (Kobayashi, 2013)

(1) There exists a stable map $f_p: S^2 \times S^2 \to \mathbf{R}^2$ with the following singular value set such that

•
$$f_p^{-1}(\omega) = L(2p, 1)$$

In particular, $p \neq q \Longrightarrow f_p$ and f_q are NOT right-left equivalent.

(2) There exists a stable map $g_p: \mathbf{CP}^2 \# \overline{\mathbf{CP}^2} \to \mathbf{R}^2$ with the following singular value set such that

•
$$g_p^{-1}(\omega) = L(2p-1,1)$$

In particular, $p \neq q \Longrightarrow g_p$ and g_q are NOT right-left equivalent.

Simplified (2,0)-trisection

Question.

- What is the 3-manifold $V_{ij} = f^{-1}(\gamma_{ij})$?
- What is the 4-manifold ?

Note: The 6-tuple $\begin{pmatrix} V_{aa} & V_{bb} & V_{cc} \\ V_{ba} & V_{cb} & V_{ac} \end{pmatrix} = \begin{pmatrix} S^1 \times S^2 & S^1 \times S^2 & S^1 \times S^2 \\ S^3 & S^3 & S^3 \end{pmatrix}$ is called a trivial 6-tuple. We exclude the trivial 6-tuple from our discussion.

Theorem (A. 2019)

The non-trivial 6-tuple $\begin{pmatrix} V_{aa} & V_{bb} & V_{cc} \\ V_{ba} & V_{cb} & V_{ac} \end{pmatrix}$ is one of the following up to reflection:

$$\begin{pmatrix} S^3 & S^3 & L((q-1)^2, q-1+\varepsilon) \\ S^1 \times S^2 & L(q-2, \varepsilon) & L(q, -\varepsilon) \end{pmatrix}, \begin{pmatrix} S^3 & L(9, 2\varepsilon) & L(4, \varepsilon) \\ L(2, 1) & L(5, \varepsilon) & S^3 \end{pmatrix}, \\ \begin{pmatrix} S^1 \times S^2 & S^3 & S^3 \\ S^3 & L(1+\varepsilon, 1) & S^3 \end{pmatrix}, \begin{pmatrix} S^1 \times S^2 & L(4, 1) & L(4, 1) \\ S^3 & L(4+\varepsilon, 1) & S^3 \end{pmatrix},$$
where $q \neq 1$ and $\varepsilon \in \{-1, 1\}.$

Main Theorem

 $f: X \to \mathbf{R}^2$: a simplified (2,0)-trisection map. The 4-manifold X is determined by the 6-tuples as follows:

(1)
$$\begin{pmatrix} S^{3} & S^{3} & L((q-1)^{2}, q-1+\varepsilon) \\ S^{1} \times S^{2} & L(q-2, \varepsilon) & L(q, -\varepsilon) \end{pmatrix}$$
$$\Longrightarrow X = \begin{cases} S^{2} \times S^{2} & \text{if } q \text{ is even} \\ \mathbf{CP}^{2} \# \overline{\mathbf{CP}}^{2} & \text{if } q \text{ is odd and } q \neq 1 \end{cases}$$
(2)
$$\begin{pmatrix} S^{3} & L(9, 2\varepsilon) & L(4, \varepsilon) \\ L(2, 1) & L(5, \varepsilon) & S^{3} \end{pmatrix} \Longrightarrow X = \begin{cases} \overline{\mathbf{CP}}^{2} \# \overline{\mathbf{CP}}^{2} & \text{if } \varepsilon = -1 \\ \overline{\mathbf{CP}}^{2} \# \overline{\mathbf{CP}}^{2} & \text{if } \varepsilon = 1 \end{cases}$$
(3)
$$\begin{pmatrix} S^{1} \times S^{2} & L(4, 1) & L(4, 1) \\ S^{3} & L(4+\varepsilon, 1) & S^{3} \end{pmatrix} \Longrightarrow X = \begin{cases} \mathbf{CP}^{2} \# \overline{\mathbf{CP}}^{2} & \text{if } \varepsilon = 1 \\ \mathbf{CP}^{2} \# \overline{\mathbf{CP}}^{2} & \text{if } \varepsilon = 1 \end{cases}$$
(4)
$$\begin{pmatrix} S^{1} \times S^{2} & S^{3} & S^{3} \\ S^{3} & S^{1} \times S^{2} & S^{3} \end{pmatrix} \Longrightarrow \mathbf{CP}^{2} \# \overline{\mathbf{CP}}^{2}.$$
(5)
$$\begin{pmatrix} S^{1} \times S^{2} & S^{3} & S^{3} \\ S^{3} & L(2, 1) & S^{3} \end{pmatrix} \Longrightarrow \mathbf{CP}^{2} \# \overline{\mathbf{CP}}^{2} \text{ or } \overline{\mathbf{CP}}^{2} \# \overline{\mathbf{CP}}^{2}.$$

(1)
$$\begin{pmatrix} S^{3} & S^{3} & L((q-1)^{2}, q-1+\varepsilon) \\ S^{1} \times S^{2} & L(q-2, \varepsilon) & L(q, -\varepsilon) \end{pmatrix}$$
$$\Longrightarrow X = \begin{cases} S^{2} \times S^{2} & \text{if } q \text{ is even} \\ \mathbf{CP}^{2} \# \overline{\mathbf{CP}}^{2} & \text{if } q \text{ is odd and } q \neq 1 \end{cases}$$
(2)
$$\begin{pmatrix} S^{3} & L(9, 2\varepsilon) & L(4, \varepsilon) \\ L(2, 1) & L(5, \varepsilon) & S^{3} \end{pmatrix} \Longrightarrow X = \begin{cases} \mathbf{CP}^{2} \# \mathbf{CP}^{2} & \text{if } \varepsilon = -1 \\ \mathbf{CP}^{2} \# \mathbf{CP}^{2} & \text{if } \varepsilon = 1 \end{cases}$$
(3)
$$\begin{pmatrix} S^{1} \times S^{2} & L(4, 1) & L(4, 1) \\ S^{3} & L(4+\varepsilon, 1) & S^{3} \end{pmatrix} \Longrightarrow X = \begin{cases} \mathbf{CP}^{2} \# \mathbf{CP}^{2} & \text{if } \varepsilon = 1 \\ \mathbf{CP}^{2} \# \mathbf{CP}^{2} & \text{if } \varepsilon = 1 \end{cases}$$
(4)
$$\begin{pmatrix} S^{1} \times S^{2} & S^{3} & S^{3} \\ S^{3} & S^{1} \times S^{2} & S^{3} \end{pmatrix} \Longrightarrow \mathbf{CP}^{2} \# \mathbf{CP}^{2}.$$
(5)
$$\begin{pmatrix} S^{1} \times S^{2} & S^{3} & S^{3} \\ S^{3} & L(2, 1) & S^{3} \end{pmatrix} \Longrightarrow \mathbf{CP}^{2} \# \mathbf{CP}^{2} \text{ or } \mathbf{CP}^{2} \# \mathbf{CP}^{2}.$$

Corollary.

The non-trivial 6-tuple determines the 4-manifold unless it is $\begin{pmatrix} S^1 \times S^2 & S^3 & S^3 \\ S^3 & L(2,1) & S^3 \end{pmatrix}$. In this exceptional case, the 4-manifold is determined up to orientation reversing diffeomorphisms.

Remark.
The trivial 6-tuple
$$\begin{pmatrix} S^1 \times S^2 & S^1 \times S^2 & S^1 \times S^2 \\ S^3 & S^3 & S^3 \end{pmatrix}$$

 $\implies X = \mathbf{CP}^2 \# \mathbf{CP}^2, \ \mathbf{CP}^2 \# \overline{\mathbf{CP}^2} \text{ or } \overline{\mathbf{CP}^2} \# \overline{\mathbf{CP}^2}.$

In particular, the 4-manifold of a trivial 6-tuple is NOT uniquely determined even if it is up to orientation reversing diffeomorphisms.

 $p_1 \in \mathbf{R}^2, f^{-1}(p_1) \simeq a \text{ torus } T^2$ γ_{μ} : the circle as shown in the figure. $\mu: T^2 \to T^2$:monodromy associated with γ_{μ} .

Lemma (Hayano, 2017)

 μ is either (1), (2) or (3).

- (1) $\mu = id_{T^2}$
- (2) $\mu =$ (a Dehn twist)
- (3) $\mu = (a \text{ Dehn twist})^4$

Proof of the Main Theorem

The proof is done according to the following steps.

- 1. Classification of the 6-tuples
 - (A) d is not parallel to any of a, b and c
 - (B) d is parallel to one of a, b and c

where d is the curve for the monodromy along γ_{μ}

2. Draw a Kirby diagram for each 6-tuple

If μ is not the identity map, then we can divide the discussion into the following two cases depending on the mutual positions of vanishing cycles:

(A) d is not parallel to any of a, b and c.

(B) d is parallel to one of a, b and c.

Lemma (Hayano, 2017)

Suppose that μ is not the identity map. Then the following hold:

If d is in case (A), then one of a, b, c intersects d once transversely.

• If
$$\mu = t_d^{\pm 4}$$
, then d is in case (B).

(1)
$$\begin{pmatrix} S^3 & S^3 & L((q-1)^2, q-1+\varepsilon) \\ S^1 \times S^2 & L(q-2, \varepsilon) & L(q, -\varepsilon) \end{pmatrix}$$
$$\Longrightarrow X = \begin{cases} S^2 \times S^2 & \text{if } q \text{ is even} \\ \mathbf{CP}^2 \# \overline{\mathbf{CP}^2} & \text{if } q \text{ is odd and } q \neq 1 \end{cases}.$$

Sketch of the proof :

The 6-tuple can happen when it is in Case (A) and $V_{ba} = S^1 \times S^2$. Since it is in Case (A), $\mu = t_d^{\pm 1}$ and *d* intersects a_2 once. If $\mu = t_d$, we can take vanishing cycles as follows :

(\because a_2 and b_2 (resp. b_2 and c'_2 , etc...) vanish at the same cusp.)

Since this case is Case (A), we can deform f so that the singular value set has a four cusped circle as follows.

$$[a_2] = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad [b_2] = \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad [c'_2] = \begin{pmatrix} -1\\ q \end{pmatrix}, \quad [a'_2] = [t_d^{\mp}(a_2)] = \begin{pmatrix} 0\\ \pm 1 \end{pmatrix}.$$

We obtain the following Kirby diagram of *X* (Case : q > 0):

(2)
$$\begin{pmatrix} S^3 & L(9, 2\varepsilon) & L(4, \varepsilon) \\ L(2, 1) & L(5, \varepsilon) & S^3 \end{pmatrix} \Longrightarrow X = \begin{cases} \mathbf{CP}^2 \# \mathbf{CP}^2 & \text{if } \varepsilon = -1 \\ \mathbf{CP}^2 \# \mathbf{CP}^2 & \text{if } \varepsilon = 1 \end{cases}$$

Sketch of the proof :

The 6-tuple can happen when it is in Case (A) and V_{ba} and V_{ac} are not $S^1 \times S^2$.

Since it is in Case (A), $\mu = t_d^{\pm 1}$ and d intersects a_2 once.

If $\mu = t_d$, we can take vanishing cycles as follows :

$$\begin{bmatrix} a_2 \\ p \\ p \\ c_2 \end{bmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad [b_2] = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad [c'_2] = \begin{pmatrix} -1 \\ q \end{pmatrix}, \\ [a'_2] = [t_d^{\pm 1}(a_2)] = \begin{pmatrix} p \\ \pm 1 \end{pmatrix}, \quad [d] = \begin{pmatrix} r \\ 1 \end{pmatrix}.$$

From the fact that V_{ba} and V_{ac} are not $S^1 \times S^2$, it is either

(i)
$$p = -1$$
 and $[c'_2] = \begin{pmatrix} -1 \\ \pm 2 \end{pmatrix}$ or (ii) $p = -2$ and $[c'_2] = \begin{pmatrix} -1 \\ \pm 1 \end{pmatrix}$.

Apply the deformation as in (1).

Case (i) :

$$[a_2] = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad [b_2] = \begin{pmatrix} 0\\1 \end{pmatrix}, \quad [c'_2] = \begin{pmatrix} -1\\\pm 2 \end{pmatrix},$$
$$[a'_2] = [t_d^{\pm 1}(a_2)] = \begin{pmatrix} -1\\\pm 1 \end{pmatrix}, \quad [d] = \begin{pmatrix} \pm 2\\1 \end{pmatrix}.$$

$$[a_2] = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad [b_2] = \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad [c'_2] = \begin{pmatrix} -1\\ \pm 2 \end{pmatrix}, \quad [a'_2] = [t_d^{\pm 1}(a_2)] = \begin{pmatrix} -1\\ \pm 1 \end{pmatrix}.$$

We obtain the following Kirby diagram of *X*:

(3)
$$\begin{pmatrix} S^1 \times S^2 & L(4,1) & L(4,1) \\ S^3 & L(4+\varepsilon,1) & S^3 \end{pmatrix} \Longrightarrow X = \begin{cases} \mathbf{CP}^2 \# \mathbf{CP}^2 & \text{if } \varepsilon = 1 \\ \mathbf{CP}^2 \# \mathbf{CP}^2 & \text{if } \varepsilon = -1. \end{cases}$$

Sketch of the proof :

The 6-tuple in Case (3) only appears in Case (B) with $\mu = t_d^{\pm 4}$. We have. Since it is in Case (B), *d* and *a*₂ are disjoint on $f^{-1}(p_1)$. We can take vanishing cycles as follows :

 b_2 c_2 c_2

$$[a_2] = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad [b_2] = \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad [c'_2] = \begin{pmatrix} -1\\ \varepsilon_2 \end{pmatrix}$$

where $\varepsilon_2 \in \{-1,1\}$, and $\varepsilon_2 = \mp \varepsilon$.

$$\mu = t_d^4 \leftrightarrow \mathbf{CP}^2 \qquad \varepsilon_2 = -1 \leftrightarrow \mathbf{CP}^2$$
$$\mu = t_d^{-4} \leftrightarrow \overline{\mathbf{CP}^2} \qquad \varepsilon_2 = 1 \leftrightarrow \overline{\mathbf{CP}^2}$$

(4)
$$\begin{pmatrix} S^1 \times S^2 & S^3 & S^3 \\ S^3 & S^1 \times S^2 & S^3 \end{pmatrix} \Longrightarrow \mathbf{CP}^2 \# \overline{\mathbf{CP}^2}.$$

(5) $\begin{pmatrix} S^1 \times S^2 & S^3 & S^3 \\ S^3 & L(2,1) & S^3 \end{pmatrix} \Longrightarrow \mathbf{CP}^2 \# \overline{\mathbf{CP}^2} \text{ or } \overline{\mathbf{CP}^2} \# \overline{\mathbf{CP}^2}.$

Sketch of the proofs of (4) and (5): In Case (4), the 6-tuple appears in Case (B) with $\mu = t_d^{\pm 1}$ and $\pm \varepsilon_2 = 1$. Hence *X* is $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$ by the same observation as in Case (3).

In Case (5), the 6-tuple appears in Case (B) with $\mu = t_d^{\pm 1}$ and $\pm \varepsilon_2 = -1$. Hence *X* is $\mathbb{CP}^2 \# \mathbb{CP}^2$ if $\varepsilon_2 = -1$, where $\mu = t_d$, and $\mathbb{CP}^2 \# \mathbb{CP}^2$ if $\varepsilon_2 = 1$, where $\mu = t_d^{-1}$.