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4-manifolds admitting simplified (2,0)-trisections with prescribed vertical 3-manifolds

fold/cusp singularities

X: a closed oriented connected smooth 4-manifold,
f:X — R?: smooth map and p € Sing(f),
H pis an indefinite fold singularity
< Flocal coord. (z,x,,z) around p s.t. f(t,x,y,z) = (t,—x> —y* +2°).
m pis a definite fold singularity
< Flocal coord. (z,x,y,z) around p s.t. f(t,x,y,z) = (t,—x> —y*> —2%).
H pis a cusp singularity
< Jlocal coord. (¢,x,y,z) around p s.t. f(t,x,y,z) = (t,x° —3xt +y? — 22).

T ©
m cis called a vanishing cycle

+= associated with 7.

p ~ q m Yis called a reference path.

indefinite fold
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fold/cusp singularities

X: a closed oriented connected smooth 4-manifold, f : X — R? : smooth
map and p € Sing(f),
H pis an indefinite fold singularity
< Flocal coord. (z,x,,z) around p s.t. f(t,x,y,z) = (t,—x> —y* +2°).
m p is definite fold singularity
< Flocal coord. (z,x,y,z) around p s.t. f(t,x,y,z) = (t,—x> —y*> —2%).
H pis a cusp singularity
< Jlocal coord. (¢,x,y,z) around p s.t. f(t,x,y,z) = (t,x° —3xt +y? — 22).

the images of indefinite fold

a

m the vanishing cycles a and b intersect

b at one point transversely.
\

the image of cusp
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(g, k)-trisection mappings [Gay-Kirby, 2016]

a smooth mapping f : X — R? is a (g, k)-trisection map. (g >k > 0)
< f(Sing(f)) is as in the figure.

m the most outer red circle- - - definite fold
singular value.

m the solid curves- - - indefinite fold singular
value.
m the cusped points- - - cusp singular value.

m three white boxes: - - consists of indefi-
nite fold images with transverse double
points but without “radial tangencies".

m f!(po) is a closed oriented surface of
genus g.

Theorem (Gay-Kirby, 2016)

For any 4-manifolds X, there is a (g, k)-trisection map.
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Simplified (g, k)-trisection mappings [Baykur-Saeki, 2017]

f:X = R?: a(g, k)-trisection map is simplified.
< f(Sing(f)) is as in the figure.

Theorem (Baykur-Saeki, 2017)

For any 4-manifold X, there is a simplified (g, k)-trisection map.
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Classification

g = l(easy)

X ~ +CP?, 5! x 3.

g =2 [Meier-Zupan, 2017]

X has a (2,0)-trisection. < X ~ §% x 52, +CP*4 + CP?
X has a (2, 1)-trisection. < X ~ S! x $3¢ 4 CP2.
X has a (2,2)-trisection. < X ~ #2(S' x $3).

[Meier-Zupan, 2017] [Baykur-Saeki, 2017]

X has a simplified (2,0)-trisection. < X ~ §? x 52, +CP?# + CP?
X has a simplified (2, 1)-trisection. < X ~ S! x §34 4+ CP.

X has a simplified (2,2)-trisection. < X ~ #2(S! x §3).
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Theorem (Kobayashi, 2013)

(1) There exists a stable map f,, : S* x §? — R? with the following singular
value set such that

= f (@) =L(2p,1)
In particular, p # g = f, and f, are NOT right-left equivalent.
(2) There exists a stable map g, : CP?#CP? — R? with the following
singular value set such that
m g, (0)=L(2p—1,1)
In particular, p # g = g, and g, are NOT right-left equivalent.

W
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Simplified (2,0)-trisection

Yaa

“bb
Question.

m What is the 3-manifold V;; = f~1(%;) ?
m What is the 4-manifold ?

1o @ oy oy
Note: The 6-tuple (V"“ Vo V“’)=<S X5 §x5 S XS)iS

Vba Vcb Vae S3 S3 S3
called a trivial 6-tuple. We exclude the trivial 6-tuple from our discussion.
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Theorem (A. 2019)

Vaa Vbb Vcc

The non-trivial 6-tuple
P (Vba Vcb Vac

> is one of the following up to

reflection:

53 s3 L((g—1)%,g—1+¢) S L(9,2¢) L(4¢)
<S1><S2 L(g—2,¢) L(g,—¢€) >’<L(2,1) L(5,¢€) 53 )

S! x 82 s3 s3 S'x 8% L(4,1) L(4,1)
$* L(l+eg1) )\ 8 L@Ed+el) )

where g # 1l and € € {—1,1}.

Yaa

o~

Vee
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f:X — R?: asimplified (2,0)-trisection map. The 4-manifold X is
determined by the 6-tuples as follows:
(1) S3 S3 L((q71)27LI71+8)
S'x8? L(g—2,¢) L(g,—¢€)
52 x 82 if g is even
= 4= 2ucp2 i .
CP“#CP- ifgisoddandg# 1

@ < S L(9,2¢) L(4,£)> oy CP’#CP’ ife=—1
L(2,1) L(.¢) S8 CPX#CP? ife=1
<s1 xS?  L(4,1) L(4,1)) oy CP*#CP* ife=1

4+8 DI CPX#CP? ife=—1.
1 2 3 I
(S ?S X 52 §3> — CP2#CP2.
1 2 3 -
<S XS ) §3> — CP2#CP? or CP2#CP>.
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o (LS, S a-1Pa-tie)
S'x8? L(g—2,¢) L(g,—¢€)
5% x §? if g is even
CP-#CP“ ifgisoddand g # 1

(2)< S* L(9,2¢) L(4,£)):>X_ CP*#CP* ife=—1
L(2,1) L(5¢) & CPX#CP? ife=1
) <S'><S2 L(4,1) L(4,1)> _ JcPHCP? ife=1
S Ld+el) 8 " | CP2#CP? ife=—1.
St x §2 s3 s3
s3 Stxs? §3
. Stxs?2 3 08
©) s L(2,1) $

) . CPCP.

) . CP2CP? or CP2CP.

Corollary.

The non-trivial 6-tuple determines the 4-manifold unless it is
Stxsr £ 8
$ L2, $
determined up to orientation reversing diffeomorphisms.

) . In this exceptional case, the 4-manifold is
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“Ybb

REINEE
SIxs? slxs? slxs?
s3 s3 s3
— X = CP*#CP?, CP*#CP? or CP?#CP?.

The trivial 6-tuple (

In particular, the 4-manifold of a trivial 6-tuple is NOT uniquely determined
even if it is up to orientation reversing diffeomorphisms.
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p1 €R? 1 (p) ~atorus T?
Yu - the circle as shown in the figure.
@ : T? — T? :monodromy associated with .

Lemma (Hayano, 2017)

1 is either (1), (2) or (3).
(1) u=idp
(2) pu = (a Dehn twist)
(3) u = (a Dehn twist)*



4-manifolds admitting simplified (2,0)-trisections with prescribed vertical 3-manifolds

Proof of the Main Theorem

The proof is done according to the following steps.
1. Classification of the 6-tuples

(A) dis not parallel to any of a,b and ¢
(B) d is parallel to one of a,b and ¢

where d is the curve for the monodromy along ¥,
2. Draw a Kirby diagram for each 6-tuple
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If u is not the identity map, then we can divide the discussion into the
following two cases depending on the mutual positions of vanishing cycles:

(A) d is not parallel to any of a,b and c.
(B) d is parallel to one of a,b and c.

Lemma (Hayano, 2017)

Suppose that u is not the identity map. Then the following hold:
m If d isin case (A), then one of a, b, c intersects d once transversely.
m If u =%, then d is in case (B).
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S'x8* L(g—2,¢) L(g,—¢€)
5% x §? if ¢ is even
CP“#CP- ifgisodd and g # 1

) < s3 s3 L((q—l)z,q—l+8)>

Sketch of the proof :

The 6-tuple can happen when it is in Case (A) and Vj, = S! x S2.
Since itis in Case (A), U = +1 and d intersects a, once.

If u =14, we can take vanishing cycles as follows :

( az and b, (resp. by and ¢}, etc...) vanish at the same cusp.)



4-manifolds admitting simplified (2,0)-trisections with prescribed vertical 3-manifolds

Since this case is Case (A), we can deform f so that the singular value set
has a four cusped circle as follows.
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w=(g). 1= (7). @=(7) w-mei=().

We obtain the following Kirby diagram of X (Case : g > 0):

a

|1

as |

T
0 |a
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2 ( S* L(9,2¢) L(4,£)> _x- CPH#CP? ife=—1
L(Za 1) L(S,S) 53 B CP2#CP2 ife=1
Sketch of the proof :
The 6-tuple can happen when it is in Case (A) and V;, and V. are not
St x 82
Since itis in Case (A), U = [}H and d intersects a; once.
If u = t,, we can take vanishing cycles as follows :

From the fact that Vj,, and V. are not S x 2, it is either

I
7N\
H |
—
~_

() p=—1and[c)] = (;) or (i) p=—2and [c}]
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Apply the deformation as in (1).
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)= (p). =(}). L

We obtain the following Kirby diagram of X:

[\

1l

= (L) =l

by 0

Ca
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@) (slxs2 L(4,1) L(4,1)>:>X_ CP*#CP? ife=1
$ Lid+e1) S " | CP2#CP? ife=—1.

Sketch of the proof :

The 6-tuple in Case (3) only appears in Case (B) with u = 17*. We have.
Since it is in Case (B), d and a, are disjoint on f~!(py).

We can take vanishing cycles as follows :

p=t < CP? &=—1 ¢+ CP?

,u:td‘4<—>W & =1« CP?
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s3 Stxsz §3
. Stxs?z 3 8
©) s L(2,1) $

Sketch of the proofs of (4) and (5):
In Case (4), the 6-tuple appears in Case (B) with u = Vand +&, = 1.

1 2 3 3 -
(4) (S x5 s ) — CP2#CP2.

) . CP2CP? or CP24CP.

Hence X is CP?#CP? by the same observation as in Case (3).

In Case (5), the 6-tuple appears in Case (B) with u = 17! and +&, = —1.

Hence X is CP*#CP? if & = —1, where u =14, and CPz#CP2 if & =1,
where U = td’l.



