Non left-orderable surgeries and generalized Baumslag-Solitar relators

Yuki Temma

Nihon University
College of Humanities and Sciences

Joint work with K. Ichihara (Nihon Univ.)

Musubime-no-Sugaku 7, Dec. 26, 2014
L-space Conjecture

L-space Conjecture [Boyer-Gordon-Watson, 2011]

M: an irreducible rational homology sphere

M is an L-space if and only if $\pi_1(M)$ is not LO

left-orderability

A non-trivial group G is called **left-orderable (LO)** if $\exists <$: a strict total order on G which is left invariant:

$$g < h \quad \rightarrow \quad fg < fh \quad \text{for } \forall f, g, h \in G$$

L-space

A rational homology sphere M is called an **L-space** if $\text{rk}\hat{HF}(M) = |H_1(M; \mathbb{Z})|$ holds for $\hat{HF}(M)$: Heegaard Floer homology.
Dehn surgery

Dehn surgery is one of the simple ways to construct L-spaces.

The following operation to obtain another 3-manifold from a given 3-manifold is called a **Dehn surgery**.

K: a knot in a 3-manifold M

Dehn surgery on K

1. remove an open regular neighborhood of K from M (drilling)
2. glue a solid torus V back along a slope p/q (Dehn filling)
Left-orderable surgery and L-space surgery

K: a knot in 3-sphere S^3

$K(p/q)$: a 3-manifold obtained by Dehn surgery on K along the slope p/q

left-orderable surgery

A Dehn surgery on K is called a **non left-orderable surgery** if it yields a closed 3-manifold with $\pi_1(K(p/q))$ is non left-orderable.

L-space surgery

A Dehn surgery on K is called an **L-space surgery** if it yields a closed 3-manifold which is an L-space.

Question

Which knots in S^3 have non-LO and/or L-space surgery?
Known results - Pretzel knots -

Theorem [Lidman-Moore, preprint (arXiv:1306.6707v1)]

For $s \geq 3$, only $(-2, 3, 2s + 1)$-pretzel knots have L-space surgeries among hyperbolic pretzel knots.

Hence, if L-space Conjecture is true, among hyperbolic pretzel knots, only $(-2, 3, 2s + 1)$-pretzel knots would have non-LO surgeries.
Known results - Pretzel knots -

Theorem [Nakae, Clay-Watson, 2013]
For $s \geq 3$, $(-2, 3, 2s + 1)$-pretzel knots have non left-orderable surgeries.

Corollary
If a $(-2, 3, 2s + 1)$-pretzel knot has an L-space surgery, then it has a non left-orderable surgery.

Remark: It is still open whether the opposite statement holds.
Main Theorem

As an extension of Nakae’s result, we have:

Theorem [Ichihara-Temma, 2014]

Let K be a knot in a 3-manifold M. Suppose that $\pi_1(M - K)$ has a presentation such as

$$\langle a, b | (w_1 a^m w_1^{-1})b^{-r}(w_2^{-1} a^n w_2)b^{r-k}\rangle$$

with $m, n \geq 0$, $r \in \mathbb{Z}$, $k \geq 0$, and a: a meridian of K. Suppose that the longitude of K is represented as $a^{-s}w a^{-t}$

with $s, t \in \mathbb{Z}$ and w is a word without a^{-1}, b^{-1}.

If $q \neq 0$ and $p/q \geq s + t$, then Dehn surgery on K along the slope p/q yields a closed 3-manifold with $\pi_1(K(p/q))$ is non left-orderable.
Remark:
The relator in the presentation in Theorem can be regarded as a generalization of the well-known **Baumslag-Solitar relator**.

The Baumslag-Solitar relator

is the relator $x^{-n}yx^my^{-1}$ with $m, n \neq 0$ in the group generated by x, y.

It plays an important role and is well-studied in combinatorial group theory and geometric group theory. For example;

Theorem [Shalen, 2001]
The Baumslag-Solitar relator cannot appear in the fundamental group of an orientable 3-manifold.
Known results - Twisted Torus knots -

Note:

$(-2, 3, 2s + 1)$-pretzel knots = twisted torus knots $K(3, 5; 2, s - 2)$.

Twisted torus knot $K(3, -4; 2, 2)$
Corollary

Known results - Twisted Torus knots -

Theorem [Vafaee, 2014]

For $p \geq 2$, $k \geq 1$, $r > 0$ and $0 < s < p$,

$K(p, kp \pm 1; s, r)$ has an L-space surgery if and only if either $s = p - 1$ or $s \in \{2, p - 2\}$ and $r = 1$.

Corollary

$K(3, q; 2, s)$ has an L-space surgery if $q > 0$ and $s \geq 1$.

Theorem [Clay-Watson, 2013]

$K(3, 3k + 2; 2, s)$ has a non left-orderable surgery if (1) $k \geq 0$ and $s = 1$, or (2) $k = 1$ and $s \geq 0$.
Corollary [Ichihara-Temma, 2014]

For \(k, s \geq 0 \), \(K(3, 3k + 2; 2, s) \) has a non left-orderable surgery.

Precisely \(\pi_1(K(p/q)) \) is non left-orderable if \(p/q \geq 3(3k + 2) + 2s \).
Recent extensions

Our results have been extended as follows.

Theorem (Christianson-Goluboff-Hamann-Varadaraj)
For $p, k, s > 0$, $K(p, pk \pm 1; p - 1, s)$ and $K(p, pk \pm 1; p - 2, 1)$ have non left-orderable surgeries.

This is obtained in Columbia University math REU program by undergraduates.

Corollary
For $s > 0$, $K(3, q; 2, s)$ have non left-orderable surgeries.

Corollary
If $K(3, q; 2, s)$ has an L-space surgery, then it has a non left-orderable surgery.
Question

How about "negatively" twisted cases? i.e., the cases that $s < 0$?

Theorem [Motegi, 2014]

For $p > q \geq 2$ and $s \geq -1$, $K(p, q; p - q, s)$ has an L-space surgery.

Corollary [Ichihara-Temma, 2014]

For $k \geq 0$, $s \geq -1$, $K(3, 3k + 2; 2, s)$ has a non left-orderable surgery.
Left-orderability

The following is well-known for experts:

Theorem

A countable group G is left-orderable if and only if G is isomorphic with a subgroup of $Homeo^+(\mathbb{R})$.

Set $G := \pi_1(K(p/q))$.

Let us consider a homomorphism $G \to Homeo^+(\mathbb{R})$.

Abusing notations, we will confuse the image of $g \in G$ and g.
Sample calculations

\[w_1 a^m w_1^{-1} b^{-r} w_2^{-1} a^n w_2 b^{r-k} = 1 \]

\[\Rightarrow a^n w_2 b^{r-k} w_1 a^m = w_2 b^r w_1 \]

Assume: \(x < ax \) for any \(x \in \mathbb{R} \)

\[a^n w_2 b^{r-k} w_1 a^m x = w_2 b^r w_1 x \]

\[< w_2 b^r w_1 a^m x \]

\[< a^n w_2 b^r w_1 a^m x \]

\[b^{r-k} x < b^r x \Rightarrow x < b^k x \Rightarrow \boxed{ x < bx } \quad (\forall x \in \mathbb{R}) \]