On Sharp Moves

Saori KANENOBU

Kobe University

Dec. 25, 2014
Contents

- Introduction.
- Background.
- Main theorem.
- Proof of the theorem.
Introduction.
The crossing change is a local move for a knot diagram:

$u(K)$: the minimum number of crossing changes making K into the trivial knot
Theorem. [M.G. Scharlemann (1985)]

\[u(K) = 1 \implies K: \text{prime}. \]

Example. The trefoil knot is unknotted by a single crossing change.
The Δ move is a local move for a knot diagram:

Δ move

$u_\Delta(K)$: the minimum number of Δ moves making K into the trivial knot
Example. The trefoil knot is unknotted by a single Δ move.

\[\Delta - \text{move} \]

Question. $u_\Delta(K) = 1 \implies K: \text{prime?}$
The # move is a local move for an oriented knot diagram:

\[u_\#(K) : \text{the minimum number of } \# \text{ moves making } K \text{ into the trivial knot} \]
Example. The trefoil knot is unknotted by a single # move.

Question. $u_\#(K) = 1 \implies K: \text{prime?}$
Background.
Theorem \cite{Murakami-Sakai1993}

K: trefoil knot, \quad J_n: 2-bridge knot $C(4,2n)$,
$\mu'(K) = 1$

$\implies \mu'(K\#J_n) = 1$.

\[\begin{align*}
K: \text{trefoil knot,} & \quad J_n: 2\text{-bridge knot } C(4,2n), \\
\mu'(K) = 1 & \quad \implies \mu'(K\#J_n) = 1.
\end{align*}\]
Proof.

\[K \# J_n = \text{2n crossings} \]

\[= \]

On Sharp Moves
Local moves generated by a $\#$ move

(1)

(2)

(3)

(4)
K, K': oriented knot
$d_G^\#(K, K')$: the minimum number of $\#$ moves making K into the K'

Theorem. K, K': oriented knot
$d_G^\#(K, K')=1 \iff \text{Arf}(K) \neq \text{Arf}(K')$

Remark.
$d_G^\#(K, \bigcirc)=u_\#(K)$
Example.

\[
\begin{align*}
\text{Arf}(5_1) &= 1 \\
\text{Arf}(O) &= 0 \\
\text{Arf}(3_1) &= 1 \\
\text{Arf}(5_2) &= 0 \\
\text{Arf}(4_1) &= 1
\end{align*}
\]
Main theorem.
Theorem [H. Murakami-S. Sakai (1993)]

\(K \): trefoil knot, \(J_n \): 2-bridge knot \(C(4,2n) \),
\(u_\#(K) = 1 \)

\(\implies u_\#(K \# J_n) = 1 \).
Let n be 3 or an even integer. Then there exist two infinite families of knots $J_1, J_2, \ldots, J_p, \ldots$ and $K_1, K_2, \ldots, K_q, \ldots$ such that:

1. J_p, K_q: n-bridge knots,
2. $u_{\#}(J_p \# K_q) = 1$ ($p, q = 1, 2, \ldots$).
$J_p, \ K_q \ (n = 2)$

$J_p: \ C(-4, 2p - 1) \quad K_q: \ C(4, -2q),$

\[\text{Theorem.} \quad p = 1 \implies \text{Theorem[H. Murakami-S. Sakai]} \]
$J_p, \ K_q \ (n = 3)$
$J_p, K_q: (n = 4)$
Proof of the theorem.
Lemma
Proof of main theorem \((n = 2)\)
Let n, m be 3 or an even integer. Then there exist two infinite families of knots $J_1, J_2, \ldots, J_p, \ldots$ and $K_1, K_2, \ldots, K_q, \ldots$ such that:

1. $J_p, : n$-bridge knots,
2. $K_q, : m$-bridge knots,
3. $u_\#(J_p \# K_q) = 1$ ($p, q = 1, 2, \ldots$).
2-bridge knot ≠ 4-bridge knot

\[K_q \]

\[J_p \]

\[2q \]

\[2p-1 \]