–x“à ŸŽq (“Œ‹ž—Žq‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
The Gordian complex of virtual knots
(ŒÃ‘º ƒŽ, ‘åŽR i”VŽ(“Œ‹ž—Žq‘åŠw), ‰ºàV ¹ŽjŽ‚Æ‚Ì‹¤“¯Œ¤‹†)
—é–Ø ‚Ü‚èŠG (“Œ‹ž—Žq‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
The Gordian complex of non-classical virtual knots by crossing changes
(‰ºàV ¹ŽjŽ‚Æ‚Ì‹¤“¯Œ¤‹†)
‰F–ì „Žj (“Œ‹žŠwŒ|‘åŠw‘åŠw‰@‹³ˆçŠwŒ¤‹†‰È)
Sheet number and 11-colorable 2-knot
‹g“c ³–¾ (é‹Ê‘åŠw‘åŠw‰@—HŠwŒ¤‹†‰È)
On shortest pathways of unlinking by Xer-diff-FtsK
(ÎŒ´ ŠCŽ, Mariel VazquezŽ, ‰ºì q–玂Ƃ̋¤“¯Œ¤‹†)
ˆîŠp „ (‘åãŽs—§‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
—‚Ý–Ú‚ÌŠiŽq“_•\ަ
•‘º “Ö (_ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
Cowrithe‚ÌŬ’l‚ÆÅ‘å’l‚ɂ‚¢‚Ä
‰ªè Œš‘¾ (‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š)
$E_6$, $E_8$Œ^•”•ªˆöŽqŠÂ‚Ì•½–ʑ㔂Æ3ŽŸŒ³‘½—l‘Ì‚Ìó‘Ô˜a•s•ϗʂ̑g‚݇‚킹“I\¬‚ɂ‚¢‚Ä
ŠâØ ‰ë‰p (²‰ê‘åŠw‘åŠw‰@HŠwŒnŒ¤‹†‰È)
3-component surface-links with braid index 4 is ribbon
¬ŠÚ ’Žq (“Œ‹ž—Žq‘åŠwŒ»‘㋳—{Šw•”)
Œ‹‚Ñ–Ú‚Ì–{•\Œ»‚ɂ‚¢‚Ä
ŽR’† m (‘åãŽs—§‘åŠw—Šw•”)
Weights of Markov traces for Alexander polynomials of mixed links
—é–Ø çˆß (‹ž“s‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
Brunnian ’êƒ^ƒ“ƒOƒ‹‚Ì••Õ$sl_2$•s•ϗʂɂ‚¢‚Ä
“c_ ŒcŽm (“Œ‹žH‹Æ‘åŠw‘åŠw‰@—HŠwŒ¤‹†‰È)
The maximal degree of the Khovanov homology under twisting
‹´–{ L (“Œ‹ž—Žq‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
‹óŠÔŠ®‘S4•”ƒOƒ‰ƒt$K_{3,3,1,1}$“à‚ÌŒ‹‚Ñ–Ú‚Æ—‚Ý–Ú‚Ì•s•ϗʂɂ‚¢‚Ä
(Vš —ºŽ(“Œ‹ž—Žq‘åŠw)‚Ƃ̋¤“¯Œ¤‹†)
’†] N° (H“c‘åŠw‘åŠw‰@HŠwŽ‘Œ¹ŠwŒ¤‹†‰È)
$(-2,3,2s+1)$Œ^ƒvƒŒƒbƒcƒFƒ‹Œ‹‚Ñ–Ú‚ÌŠî–{ŒQ‚Ì•\ަ‚Æ$\mathbb{R}$-covered—t‘w\‘¢‚ɂ‚¢‚Ä
¡•Ê•{ F‹K (L“‡‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
ƒ`ƒFƒbƒJ[ƒ{[ƒhÊF‰Â”\‚ȉ¼‘zŒ‹‚Ñ–Ú‚Ìnormalized arrow polynomial‚ɂ‚¢‚Ä
¬’¹‹ —S (“Œ‹žH‹Æ‘åŠw‘åŠw‰@—HŠwŒ¤‹†‰È)
$\bar{\mu}$ invariant of nanophrases
‘ꉪ ‰p—Y (‘åãŽs—§‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
(2,1)ƒP[ƒuƒ‹Œ‹‚Ñ–Ú‚Ì—ë”ÔŒW”‘½€Ž®
–ìâ •Žj (‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š)
ƒAƒŒƒNƒTƒ“ƒ_[ƒJƒ“ƒhƒ‹‚Ì$G$‘°‚ƃ‚ƒWƒ…ƒ‰[•s•ÏŽ®˜_
ˆ°Œ´ ‘‰î (L“‡‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
nƒcƒCƒXƒgƒXƒpƒ“3—tŒ‹‚Ñ–Ú‚ÌŠî–{ƒoƒCƒJƒ“ƒhƒ‹
ŽR–{ ‘ñl (_ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
On the Gordian distance by pass moves
ŽsŒ´ ˆê—T (“ú–{‘åŠw•¶—Šw•”)
‘o‹È“IŒ‹‚Ñ–Ú‚Ì—áŠO“Iƒf[ƒ“ŽèpƒXƒ[ƒvW‡‚ÆÅ’ZƒXƒ[ƒv
ì‰z Œªˆê (‹à‘ò‘åŠw—HŒ¤‹†ˆæ)
”ñŽ©–¾‚È•½–ʃOƒ‰ƒt‚Ì•s•ϗʂɂ‚¢‚Ä
¯Œ´ ”¹l (‘ˆî“c‘åŠw‘åŠw‰@‹³ˆçŠwŒ¤‹†‰È)
Link-universal subsets of $\mathbb{R}^3$
˜a“c KŽj˜N (L“‡‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
On classification of two-point homogeneous quandle of cyclic type
(“cŠÛ ”ŽŽmŽ (L“‡‘åŠw)‚Ƃ̋¤“¯Œ¤‹†)
’JŒû Œ’‘¾ (_ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
On free knots
¬”© —zŽ™ (‘åãŽs—§‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
‚à‚ë‚ÄŒ^—‚Ý–Ú‚Ì\¬
¬‘ò ½ (‹îàV‘åŠw‘‡‹³ˆçŒ¤‹†•”)
Nonminimal bridge positions of torus knots are stabilized
ŽÅ“c Œ«Žj (‘åãŽs—§‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
—L—ƒUƒCƒtƒFƒ‹ƒgs—ñ‚Ì“Á’¥•t‚¯
ˆî—t ˜a³ (“Œ–k‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
On the enhancements to the Milnor numbers of a class of mixed polynomials
ÎŒ´ ŠC (Imperial College London, Department of Mathematics)
Nullification distance between links with small crossing numbers
(joint work with Dorothy Buck)
ŠÝ–{ Œ’Œá (‘åãH‹Æ‘åŠwHŠw•”)
Simple ribbon fusions for links
(a’J “N•vŽ(‘åãH‹Æ‘åŠw), ’Ë–{ ’B–çŽ(‘åãH‹Æ‘åŠw)‚Ƃ̋¤“¯Œ¤‹†)
XŒ³ Ѝޡ (b“ì‘åŠw’m”\î•ñŠw•”)
Twisted torus knots and essential surfaces
ŸNˆä ‚Ý‚¬˜a (“Œ‹ž—Žq‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
Examples of finite type invariants for virtual knots
ˆÉ“¡ “N–ç (“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È)
Local Aut($F_{n}$)-representations of braids: classification and application
ŽR“c ‚³‚â‚© (“ú–{—Žq‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
Minimal unknotting sequences of Reidemeister moves containing unmatched RII moves
(àV“c ŽÀŽ, —Ñ ’‰ˆê˜YŽ, —Ñ ”ü˜aŽ‚Æ‚Ì‹¤“¯Œ¤‹†)
‘–ì Œ’‘¾ (‘åã‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È)
4ŽŸŒ³‘½—l‘̂̋ȖÊ}Ž®‚Ì‹ï‘Ì—á‚Ì\¬‚ɂ‚¢‚Ä
´“c Œb— (“Œ‹žŠwŒ|‘åŠw‘åŠw‰@‹³ˆçŠwŒ¤‹†‰È)
On links with common sublinks
‰Pˆä ‘ô–ç (“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È)
“Á•Ê‚ÈL‹óŠÔ‚Æ—‚ݖڂ̇˜‚ɂ‚¢‚Ä
â–{ ^—¹ (‘ˆî“c‘åŠw‘åŠw‰@‹³ˆçŠwŒ¤‹†‰È)
Plane curves in an immersed graph in $\mathbb{R}^2$
(’JŽR Œö‹KŽ(‘ˆî“c‘åŠw‹³ˆçŠw•”)‚Ƃ̋¤“¯Œ¤‹†)
’JŒû —T–ƒ (“Œ‹žŠwŒ|‘åŠw‘åŠw‰@‹³ˆçŠwŒ¤‹†‰È)
Interpretations of rack coloring knot invariants in terms of quandles
ˆäã •à (“Œ‹žH‹Æ‘åŠw‘åŠw‰@î•ñ—HŠwŒ¤‹†‰È)
ƒJƒ“ƒhƒ‹‚ð—˜—p‚µ‚½—‚Ý–Úƒzƒ‚ƒgƒs[—Þ‚Ì•ª—Þ‚ÉŒü‚¯‚Ä