The Iwasawa-type formula of \mathbb{Z}_{p}^{d}-covers of links in homology 3-spheres

Sohei Tateno joint work with Jun Ueki 2023/12/25

Contents

1. Historical backgrounds

2. Our main result
3. p-adic numbers
4. Proof

Fix a prime number p.

Notation

For a finite group G, let $e(G)=($ how many times p divides the order of G).

Example

- $e\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)=2$
- $e\left(\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p^{3} \mathbb{Z}\right)=4$

Historical backgrounds

For each number field k, an abelian group called the ideal class group $C l(k)$ is defined.
The finite number $h(k):=\# C l(k)$ is an important algebraic invariant called the class number of k.

Theorem [Kummer, 1847]
Let ζ_{p} denote a p-th root of unity. If $p \neq 2$ and $p \nmid h\left(\mathbb{Q}\left(\zeta_{p}\right)\right)$,
then The Fermat Last Conjecture holds for $n=p$.

Let \mathbb{Z}_{p} denote the group $\lim \mathbb{Z} / p^{n} \mathbb{Z}$.
$n \in \mathbb{N}$

Theorem(Iwasawa's class number formula) [lwasawa, 1959]

Let k_{∞} / k be a \mathbb{Z}_{p}-extension and let $k_{p^{n}} / k$ be the $\mathbb{Z} / p^{n} \mathbb{Z}$-subextensions.
Then ${ }^{\ddagger!} \mu, \lambda \in \mathbb{Z}_{\geq 0}$ and $\nu \in \mathbb{Z}$, depending only on k_{∞} / k, such that, for every $n \gg 0$,
$e\left(C l\left(k_{p^{n}}\right)\right)=\mu p^{n}+\lambda n+\nu$.

Example

$k:=\mathbb{Q}\left(\zeta_{p}\right) \subset \mathbb{Q}\left(\zeta_{p^{2}}\right) \subset \mathbb{Q}\left(\zeta_{p^{3}}\right) \subset \ldots \subset \bigcup_{n \geq 1} \mathbb{Q}\left(\zeta_{p^{n}}\right)=: k_{\infty}$.

A closed connected orientable 3-manifold M is called a rational homology 3-sphere $\left(\mathbb{Q} H S^{3}\right)$ if $H_{i}(M, \mathbb{Q}) \simeq H_{i}\left(S^{3}, \mathbb{Q}\right)$ for all $i \geq 0$.

Theorem [Hillman-Matei-Morishita, 2006]. [Kadokami-Mizusawa, 2008]. [Ueki, 2017]
Let L be a link in a $\mathbb{Q} H S^{3} M$. Let $\left(M_{p^{n}} \rightarrow M\right)_{n}$ be a compatible system of $\mathbb{Z} / p^{n} \mathbb{Z}$-covers branched along L. Suppose every $M_{p^{n}}$ is a $\mathbb{Q} H S^{3}$.
Then ${ }^{\exists \exists} \mu, \lambda \in \mathbb{Z}_{\geq 0}$ and $\nu \in \mathbb{Z}$, depending only on $\left(M_{p^{n}} \rightarrow M\right)_{n}$ and p, such that, for every $n \gg 0$,

$$
e\left(H_{1}\left(M_{p^{n}}\right)\right)=\mu p^{n}+\lambda n+\nu .
$$

class field theory

k : number field
l : maximal unramified Galois extension of k We have $\operatorname{Gal}(l / k)^{\mathrm{ab}} \cong C l(k)$.

Hurewicz theorem
X : path-connected space
We have $\pi_{1}(X)^{\mathrm{ab}} \cong H_{1}(X)$.

Remark

We have
M is $\mathbb{Q H S} S^{3} \Longleftrightarrow H_{1}(M)$ is finite
M is $\mathbb{Z} H S^{3} \Longleftrightarrow H_{1}(M)=0$
Hence
$S^{3} \in\left\{\mathbb{Z} H S^{3}\right\} \subset\left\{\mathbb{Q} H S^{3}\right\}$
$\mathbb{Q} \in\{$ number fields with $C l(k)=0\} \subset\{$ number fields $\}$

Theorem [Cuoco-Monsky, 1981]

Let k_{∞} / k be a \mathbb{Z}_{p}^{d}-extension and let $k_{p^{n}} / k$ be the
$\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{d}$-subextensions.
Then ${ }^{\exists!} \mu, \lambda \in \mathbb{Z}_{\geq 0}$, depending only on k_{∞} / k, s.t.

$e\left(C l\left(k_{p^{n}}\right)\right)=\left(\mu p^{n}+\lambda n+O(1)\right) p^{(d-1) n}$,
where O is the Bachmann-Landau notation.

Our main result

Let (M, L) be a pair of a $\mathbb{Q} H S^{3}$ and a link. Put $X:=M \backslash L$.
Let $\left(X_{p^{n}} \rightarrow X\right)_{n}$ be the compatible system of $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{d}$-covers of X.
Let $M_{p^{n}}$ be the Fox completions of $X_{p^{n}}$.
Let $W:=\left\{\xi \in \mathbb{C} \mid \xi^{p^{n}}=1\right.$ for some $\left.n \geq 0\right\}$.

Main result

Suppose that M is a $\mathbb{Z} H S^{3}$ and the Alexander polynomial does not vanish on $(W \backslash\{1\})^{d}$. Then ${ }^{\exists!} \mu, \lambda \in \mathbb{Z}_{\geq 0}$ and $\mu_{d-1}, \ldots, \mu_{1}, \lambda_{d-1}, \ldots, \lambda_{1}, \nu \in \mathbb{Q}$, depending only on L and p, such that, for ${ }^{\forall} n \gg 0$, $e\left(H_{1}\left(M_{p^{n}}\right)\right)=\mu p^{d n}+\lambda n p^{(d-1) n}+\mu_{d-1} p^{(d-1) n}+\lambda_{d-1} n p^{(d-2) n}+\ldots+\mu_{1} p^{n}+\lambda_{1} n+\nu$.
p-adic numbers
$\mathbb{Z} / p \mathbb{Z} \stackrel{\varphi_{2}}{\rightleftarrows} \mathbb{Z} / p^{2} \mathbb{Z} \stackrel{\varphi_{3}}{\rightleftarrows} \mathbb{Z} / p^{3} \mathbb{Z} \longleftarrow \cdots$
$\mathbb{Z}_{p}:=\lim _{\leftarrow} \mathbb{Z} / p^{n} \mathbb{Z}=\left\{\left\{a_{n}\right\}_{n} \in \prod_{n>1} \mathbb{Z} / p^{n} \mathbb{Z} \mid \varphi_{n}\left(a_{n}\right)=a_{n-1}\right\}$ is the ring of p-adic integers.
Example
$p:=5$
$a:=(2,7,57, \ldots) \in \mathbb{Z}_{5}$
$2 \in \mathbb{Z} / 5 \mathbb{Z}$
$7=2+1 \cdot 5 \in \mathbb{Z} / 5^{2} \mathbb{Z}$
$57=2+1 \cdot 5+2 \cdot 5^{2} \in \mathbb{Z} / 5^{3} \mathbb{Z}$
$1=(1,1, \ldots)$ is the identity of \mathbb{Z}_{5}.
$-1=(-1,-1, \ldots)=(4,24,124, \ldots)=\left(2^{2}, 7^{2}, 57^{2}, \ldots\right)=(2,7,57, \ldots)^{2}=a^{2}$
Therefore, $a=\sqrt{-1} \in \mathbb{Z}_{5}$.

$$
\begin{aligned}
& \mathbb{Z}_{5}:=\lim _{\leftarrow} \mathbb{Z} / 5^{n} \mathbb{Z}=\left\{\left\{a_{n}\right\}_{n} \in \prod_{n \geq 1} \mathbb{Z} / 5^{n} \mathbb{Z} \mid \varphi_{n}\left(a_{n}\right)=a_{n-1}\right\} \\
& \sqrt{-1}=(2,7,57, \ldots) \in \mathbb{Z}_{5} \\
& L:=K_{1} \cup K_{2} \\
& X:=S^{3} \backslash L \\
& \alpha_{1}, \alpha_{2}: \text { meridians of } K_{1}, K_{2}
\end{aligned}
$$

Define $\tau: \pi_{1}(X) \rightarrow \mathbb{Z}_{5}$ by $\alpha_{1} \mapsto 1, \alpha_{2} \mapsto \sqrt{-1}$.
$\tau_{n}: \pi_{1}(X) \xrightarrow{\tau} \mathbb{Z}_{5} \rightarrow \mathbb{Z} / 5^{n} \mathbb{Z}$
$X_{5^{n}}$: spaces corresponding to $\operatorname{ker} \tau_{n}$
Then $\left(X_{5^{n}} \rightarrow X\right)_{n}$ form a compatible system of $\mathbb{Z} / 5^{n} \mathbb{Z}$-covers
This is not derived from any \mathbb{Z}-cover. Indeed, if so, then
$\pi_{1}(X) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ induces $\pi_{1}(X) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{5}$.
This contradicts $\operatorname{im} \tau=\mathbb{Z}^{2}$.

Example

$L=K_{1} \cup K_{2} \cup K_{3}$
$X:=S^{3} \backslash L$
$\alpha_{1}, \alpha_{2}, \alpha_{3}$: meridians of K_{1}, K_{2}, K_{3}
Define $\tau: \pi_{1}(X) \rightarrow \mathbb{Z}_{5}^{2}$ by $\alpha_{1} \mapsto(1,0), \alpha_{2} \mapsto(\sqrt{-1}, 0), \alpha_{3} \mapsto(0,1)$.
$\tau_{n}: \pi_{1}(X) \xrightarrow{\tau} \mathbb{Z}_{5}^{2} \rightarrow\left(\mathbb{Z} / 5^{n} \mathbb{Z}\right)^{2}$
$X_{5^{n}}$: spaces corresponding to $\operatorname{ker} \tau_{n}$
Then $\left(X_{5^{n}} \rightarrow X\right)_{n}$ form a compatible system of $\left(\mathbb{Z} / 5^{n} \mathbb{Z}\right)^{2}$-covers.
Main result
$e\left(H_{1}\left(M_{p^{n}}\right)\right)=\mu p^{d n}+\lambda n p^{(d-1) n}+\mu_{d-1} p^{(d-1) n}+\lambda_{d-1} n p^{(d-2) n}+\ldots+\mu_{1} p^{n}+\lambda_{1} n+\nu$.

Sketch of the proof of our main result

$\tau: \pi_{1}(X) \rightarrow \mathbb{Z}_{p}^{d}$ a homom. corresp. to the \mathbb{Z}_{p}^{d}-cover.
$\alpha_{1}, \ldots, \alpha_{c}$: meridians of the components K_{1}, \ldots, K_{c} of L
$\mathrm{v}_{i}:=\tau\left(\alpha_{i}\right)=\left(v_{i 1}, \ldots, v_{i d}\right)$. Put $W(n):=\left\{\xi \in \mathbb{C} \mid \xi^{p^{n}}=1\right\}$.
For $\zeta=\left(\zeta_{1}, \ldots, \zeta_{d}\right) \in W(n)^{d}$, put $\zeta^{V_{i}}:=\zeta_{1}^{v_{i 1}} \ldots \zeta_{d}^{v_{i d}}$.
By works of Mayberry-Murasugi and Porti, we can show

where $N_{p^{n}}$ are positive integers that divide $p^{d n}$. By a work of Monsky for estimates, we complete the proof.

Reference

Albert A. Cuoco and Paul Monsky, Class numbers in \mathbb{Z}_{p}^{d}-extensions, Math. Ann. 255 (1981), no. 2, 235-258.
Jonathan Hillman, Daniel Matei, and Masanori Morishita, Pro-p link groups and p-homology groups, Primes and knots, 121-136, Contemp. Math., 416, Amer. Math. Soc., Providence, RI, 2006.

Kenkichi Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65 (1959), 183-226.

John P. Mayberry and Kunio Murasugi, Torsion-groups of abelian coverings of links, Trans. Amer. Math. Soc.271(1982), no.1, 143-173.
Teruhisa Kadokami and Yasushi Mizusawa, Iwasawa type formula for covers of a link in a rational homology sphere, J. Knot Theory Ramifications, 17 (2008), no. 10, 1199-1221.

Paul Monsky, On p-adic power series, Math. Ann., 255 (1981), no. 2, 217-227.

Masanori Morishita, Knots and primes, An introduction to arithmetic topology. Universitext. Springer, London, 2012.
Joan Porti, Mayberry-Murasugi's formula for links in homology 3-spheres, Proc. Amer. Math. Soc., 132 (2004), no. $11,3423-3431$.
Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7. Publish or Perish, Inc., Berkeley, Calif., 1976.

Sohei Tateno, The Iwasawa invariants of \mathbb{Z}_{p}^{d}-covers of links, Ph.D. thesis, Graduate School of Mathematics, Nagoya University, 2023.

Sohei Tateno and Jun Ueki, The Iwasawa invariants of \mathbb{Z}_{p}^{d}-covers of links, in preparation.

Jun Ueki, On the Iwasawa invariants for links and Kida's formula, Internat. J. Math. 28 (2017), no. 6, 1750035, 30 pp.

