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FIX a prime number p.

Notation

For a finite group G, let
e(G) = ( how many times p divides the order of G ).

Example

e e(ZIp*Z) =2
e e(ZIpZ @ ZIp°7Z) = 4



Historical backgrounds

For each number field &, an abelian group called
the Ideal class group Ci(k) 1s defined.

The finite number hk) := #CIl(k) IS
an Important algebraic invariant called the class number of %.

Theorem [Kummer, 1847]
Let £, denote a p-th root of unity. It p # 2 and p + K(Q())).

then The Fermat Last Conjecture holds for n = p.




Let 7, denote the group 1i£1 ZIp"Z.

neN

Theorem(lwasawa’s class number formula) [lwasawa, 1959]

Let k/k be a Z -extension and let k,./k be the Z/p"Z-subextensions.

Then 'y, 1 € Z,, and v € Z, depending only on k_/k, such that, for every n > 0,
e(Cl(k,n) = up" + An + v.
Example

k:=Q(,) C Q) CAGY C ... | AL, =: ky,

n>1




A closed connected orientable 3-manifold M is called a
rational homology 3-sphere(QHS?) if H(M, Q) ~ H(S>, Q) for all i > 0.

Theorem [Hillman-Matel-Morishita, 2006]. [Kadokami-Mizusawa,

20038], [Ueki, 201 7]
Let L be a link in a QHS® M. Let (M,,, - M), be a compatible system

of Z/p"Z-covers branched along L. Suppose every M, is a QHS".

Then *u, 4 € Z,, and v € Z, depending only on (M,, - M), and p,

such that, for every n > 0,
e(H(M,,)) = up" + in +v.



class field theory
k : number fleld

[ - maximal unramified Galois extension of k
We have Gal(l/k)® =~ Cl(k).

Hurewicz theorem
X . path-connected space

We have 7,(X)** ~ H,(X).



Remark
We have

M is QHS «<H,(M) is finite

M is ZHS <H (M) = 0

Hence

S° € {ZHS’} c {QHS")

Q € {number fields with Ci(k) =0} c {number fields}



Theorem [Cuoco-Monsky, 1931]
et k. /k be a Zi-extension and let k,,./k be the

(ZIp"Z)%subextensions.

Then *u, 1 € 7, ; XZ/ \Z i,
depending only on k_/k, S.t. \Z Z/
e(Cl(k,)) = (up" + An + O(1)p“=H",

where O 1s the Bachmann-Landau notation.




Our main result
Let (M, L) be a pair of a QHS® and a link. Put X := M\L.

Let (X,, — X), be the compatible system of (ZIp"Z)*covers of X.
Let M, be the Fox completions of X .

Let W:={feC|& =1 for some n >0}
Maln result
Suppose that M is a ZHS’ and the Alexander polynomial does not

vanish on (W\{1})%. Then Fu, A € Z,yand p,_y, ..., 11, Ay_1s --» A1 v € Q,

depending only on L and p, such that, for Yn > 0,

e(H\(M),.)) = up® + Anp @ oy, pldn g a0 ppldTn 4 up" + A+ v,



p-adic humbers
ZIp7 < 7Ip*7 < 7p37 — ..

Z,:=lmZ/p"7Z = {{a,}, € HZ/p”Z | @,(a,) =a,_} 1S the ring of p-adic integers.

n n>1
Example

p.=>5

a:=2,7,57,...) € Zs

2 € 7137

7=2+4+1-5€Z/5Z

57T=2+1-5+2-52€7/57

1=(1, 1,...) Is the identity of Z..

—1=(-1,-1,..)=(4,24,124,..) =% 7%, 57*,..)=2,7,57,..) =a’

Therefore, a =4/—-1 € Z..




75:=1imZ7/5'7 = ({a,}, € || 2/5"Z | ,(a,) = a,_,}

n n>1
V-1=2,17,57,...) € Z,
L:=K,UK,

X :=S°\L

a,,a, . meridians of K, K,

Define r: ny(X) » Zs by a; —» 1, a, » v/ —1.
v m(X) > Zs » 7157
X, . Spaces corresponding to kerr,

Then (X5, —» X), form a compatible system of Z/5"7-covers

This 1s not derived from any Z-cover. Indeed, It so, then
(X)) > Z — Z/p"Z \nduces (X)) » Z - Z.

This contradicts imz = Z>



Example

X :=S°\L

a,, A, a; . meridians of K, K,, K,

Define 7 : 7(X) = Z2 by a, = (1,0), a; = (1/=1,0), a3 = (0,1).
7, m(X) = 7% » (Z15"7)?

X, . spaces corresponding to kerr,

Then (X,, — X), form a compatible system of (Z/5"Z)*-covers.

Main result
e(H(M,,)) = up™ + Anp' " + iy p“=" + Ay _inp" + L+ pp" + An+ v,




Sketch of the proof of our main result
7 m(X) - Z% a homom. corresp. to the Z4-cover.

a, ...,a, . meridians of the components K, ...,K. of L

Vi=1(a;) = Vi1, ..., Vi) Put Wn) .= {é e C| cfpn =1}.

FOr ¢ = (¢, .., &,) € W)Y, put ¢V = ...
By works of Mayberry-Murasugi and Portl, we can show

e(H,(M,)) = ord, [N,. | | [ AV, ., ¢ ) | = ord (N,,) + > D ord, (A ¢V, ... L),

L'cL e Wn)? L'cL € Wn)?
Nig 1€ (i i) ViE G € iy i)
Ni=1G & (i iy D) Ni=1G ¢ (i i)

where N, are positive integers that divide p®. By a work of Monsky for

estimates, we complete the proof.
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