Summary	Definition	Universal covering of $Q_n(K)$	Main result and its proof

結び目 n-カンドルの2次カンドルホモロジー群

谷口 雄大 田中心氏 (東京学芸大学)との共同研究

大阪大学大学院理学研究科

結び目の数理 VI December 23, 2023

Summary ●00	Definition 00	Universal covering of $Q_n(K)$ oo	Main result and its proof
Summary			

- K: an oriented knot in S³ → Q(K): the knot quandle of K The knot quandle is a complete invariant for oriented knots up to orientation.
- Eisermann established the covering theory of quandles, and computed the second quandle homology group $H_2^Q(Q(K))$.
- The knot *n*-quandle $Q_n(K)$ is a quotient of Q(K) $(n \in \mathbb{Z}_{>1})$.
- Knot *n*-quandles are more treactable than knot quandles.

Main result

We determine the second quandle homology group $H_2^Q(Q_n(K))$.

 $(K = K' \Leftrightarrow K \text{ and } K' \text{ are equivalent up to 2-bridge knot summands.})$

Theorem

$$H_2^Q(Q_3(K)) \cong \begin{cases} 0 & (K = 0_1), \ \mathbb{Z}/2\mathbb{Z} & (K = 3_1), \\ \mathbb{Z}/6\mathbb{Z} & (K = 5_1), \ \mathbb{Z} & (K : \text{otherwise}). \end{cases}$$

Theorem

$$H_2^Q(Q_4(K)) \cong \begin{cases} 0 & (K=0_1), & \mathbb{Z}/4\mathbb{Z} & (K=3_1), \\ \mathbb{Z} & (K: \text{otherwise}). \end{cases}$$

Summary	Definition	Universal covering of $Q_n(K)$	Main result and its proof
000			

Theorem

$$H_2^Q(Q_5(K)) \cong \begin{cases} 0 & (K=0_1), & \mathbb{Z}/10\mathbb{Z} \quad (K=3_1), \\ \mathbb{Z} & (K: \text{ otherwise}). \end{cases}$$

Theorem

$$\forall n > 5, H_2^Q(Q_n(K)) \cong \begin{cases} 0 & (K = 0_1), \\ \mathbb{Z} & (K : \text{otherwise}). \end{cases}$$

Corollary

(1)
$$H_2^Q(Q_n(K)) \cong 0 \Leftrightarrow K = 0_1 \ (n \in \mathbb{Z}_{>2}).$$

(2) $H_2^Q(Q_n(K)) \cong H_2^Q(Q_n(3_1)) \Leftrightarrow K = 3_1 \ (n = 3, 4, 5).$
(3) $H_2^Q(Q_3(K)) \cong H_2^Q(Q_3(5_1)) \Leftrightarrow K = 5_1.$

Summary 000	Definition ●0	Universal covering of $Q_n(K)$ oo	Main result and its proof

Quandle

Definition [Joyce '82, Matveev '82]

 $\begin{array}{l} X: \text{ a non-empty set, } *: X^2 \to X: \text{ a binary operation} \\ X = (X, *): \text{ a quandle} \\ \Leftrightarrow \bullet \forall x \in X, x * x = x. \quad \bullet \forall y \in X, S_y : X \to X; x \mapsto x * y: \text{ a bijection.} \\ \bullet \forall x, y, z \in X, (x * y) * z = (x * z) * (y * z). \end{array}$

Example K: an ori. knot in $S^3 = \mathbb{R}^3 \cup \{\infty\}$, $E(K) = S^3 \setminus int N(K)$. $\overline{Q(K)} := \{\alpha : I \to E(K) \mid \alpha(0) \in \partial E(K), \alpha(1) = \infty\} / homotopy$ $\alpha * \beta := \alpha \cdot \beta^{-1} \cdot (a \text{ meridian loop at } \beta(0) \text{ in the } + \text{-direction}) \cdot \beta$.

Knot *n*-quandle

K, K': ori. 1-knots.

- <u>Fact</u> $Q(K') \cong Q(K) \Leftrightarrow K' \sim K \text{ or } -K!$ [Joyce '82, Matveev '82].
 - $|Q(K)| < \infty \Leftrightarrow K = 0_1. (|Q(0_1)| = 1.)$

Knot *n*-quandle

$\begin{array}{ll} K, K': \mbox{ ori. 1-knots.} \\ \underline{\mathsf{Fact}} & \bullet \ Q(K') \cong Q(K) \Leftrightarrow K' \sim K \ \mbox{or} \ -K! \ [\mbox{Joyce '82, Matveev '82].} \\ & \bullet \ |Q(K)| < \infty \Leftrightarrow K = 0_1. \ (|Q(0_1)| = 1.) \end{array}$

Definition

$$n \in \mathbb{Z}_{\geq 2}, \ Q_n(K) := Q(K)/x \sim S_y^n(x) \ (S_y(x) = x * y).$$

 $Q_n(K) := (Q_n(K), *):$ the knot *n*-quandle of *K*.

<u>Fact</u>

•
$$Q_2(4_1) \cong Q_2(5_1)$$
. • $|Q_2(3_1)| = 3$, $|Q_3(3_1)| = 4$.

- $|Q_n(K)| = 1 \Leftrightarrow K = 0_1$ [Winker '84].
- $\forall X$: a finite quandle, $\exists n \in \mathbb{Z}_{\geq 2}$ s.t. $\operatorname{Hom}(Q(K), X) \stackrel{1:1}{\leftrightarrow} \operatorname{Hom}(Q_n(K), X)$.

Summary	Definition	Universal covering of $Q_n(K)$	Main result and its proof
		● O	

Covering, extension and universal covering

$$\begin{split} X, \tilde{X}: \text{ connected quandles, } \Lambda: \text{ a group.} \\ \bullet \ p: \tilde{X} \twoheadrightarrow X: \text{ a covering } \Leftrightarrow p(\tilde{y}) = p(\tilde{z}) \text{ implies that } \forall \tilde{x} \in \tilde{X}, \tilde{x} * \tilde{y} = \tilde{x} * \tilde{z}. \\ \bullet \ \tilde{X}: \text{ an extension of } X \text{ by a group } \Lambda \ (\Lambda \curvearrowright \tilde{X}) \\ \Leftrightarrow \exists p: \tilde{X} \twoheadrightarrow X \text{ s.t.} \\ \begin{cases} \forall \lambda \in \Lambda, \forall \tilde{x}, \tilde{y} \in \tilde{X}, (\lambda \cdot \tilde{x}) * \tilde{y} = \lambda \cdot (\tilde{x} * \tilde{y}) \text{ and } \tilde{x} * (\lambda \cdot \tilde{y}) = \tilde{x} * \tilde{y}. \\ \forall x \in X, \Lambda \curvearrowright p^{-1}(x): \text{ free and transitive.} \end{cases} \\ \bullet \ p: \tilde{X} \twoheadrightarrow X: \text{ a universal covering} \\ \Leftrightarrow \forall \bar{p}: \bar{X} \twoheadrightarrow X: \text{ a covering, } \exists \phi: \tilde{X} \to \bar{X}: \text{ a quandle hom. s.t. } p = \bar{p} \circ \phi. \\ \hline \text{Note} \quad p: \tilde{X} \twoheadrightarrow X: \text{ a quandle homomorphism.} \\ p: \text{ a universal covering } \tilde{X}: \text{ an extension of } X \text{ (by } \exists \Lambda) \Rightarrow p: \text{ a covering} \end{split}$$

000	00	$ \begin{array}{c} \text{Only ersal covering of } \mathcal{Q}_n(K) \\ \text{O} \end{array} $	000000
	If \tilde{X} : an extension of X by If $p : \tilde{X} \rightarrow X$: a universal $(H_2^Q(X))$: the second quan		

Summary 000	Definition 00	Universal covering of $Q_n(K)$ o \bullet	Main result and its proof
	 If X̃: an extension of X by If p : X̃ → X: a universal of (H₂^Q(X): the second quant 	covering, $H_2^Q(X) \cong \Lambda_{ab}$.	
Th	neorem [Eisermann '03]		
K	: an ori. knot, \hat{K} : the long l	knot obtained from K .	

Corollary [Eisermann '03]

If K is nontrivial, then the following hold:

(2) $\exists p : Q(\hat{K}) \rightarrow Q(K)$: a universal covering.

 $H_2^Q(Q(K)) = 0 \Leftrightarrow K = 0_1.$

<u>Goal</u> To show the knot *n*-quandle version of the Eisermann's results.

(1) $Q(\hat{K})$: an extension of Q(K) by $\mathbb{Z}(=\langle l_K \rangle < \pi_1(\mathbb{R}^3 \setminus K))$.

Summary	Definition	Universal covering of $Q_n(K)$ oo	Main result and its proof
000	00		●00000

K: an ori. knot, $n \in \mathbb{Z}_{\geq 2}$. $\tau^n K$: the *n*-twist spun K (=the 2-knot obtained from K by *n*-twist spinning). M_K^n : the *n*-fold branched covering space of S^3 branched along K.

Theorem

If K is nontrivial and $n \geq 2$, then the following hold: (1) $Q(\tau^n K)$: an extension of $Q_n(K)$ by $\langle l_K \rangle$ ($\langle \pi_1(M_K^n))$, where $l_K \in \pi_1(M_K^n) \cong \operatorname{Ker}(\pi_1(E(K)) \twoheadrightarrow \mathbb{Z}/n\mathbb{Z}; m_K \mapsto 1)/\langle \langle m_K^n \rangle \rangle$. (2) $\exists p : Q(\tau^n K) \twoheadrightarrow Q_n(K)$: a universal covering.

Corollary

$$H_2^Q(Q_n(K)) \cong \langle l_K \rangle < \pi_1(M_K^n).$$

Summary	Definition	Universal covering of $Q_n(K)$	Main result and its proof
			00000

To compute $H_2^Q(Q_n(K))$, it is sufficient to determine the order of l_K . \widetilde{K} : the branching set of $M_K^n \Rightarrow l_K = [\widetilde{K}] \in \pi_1(M_K^n)$.

K: prime ($\Leftrightarrow M_K^n$: irreducible)

(i) $|\pi_1(M_K^n)| = \infty \Rightarrow$ the universal covering space of M_K^n is \mathbb{R}^3 . $p: \mathbb{R}^3 \to M_K^n$: the universal covering. If l_K is trivial, each connected component of $p^{-1}(\widetilde{K})$ is S^1 . \uparrow This contradicts to the Smith theory.

Summary	Definition	Universal covering of $Q_n(K)$	Main result and its proof
			00000

To compute $H_2^Q(Q_n(K))$, it is sufficient to determine the order of l_K . \widetilde{K} : the branching set of $M_K^n \Rightarrow l_K = [\widetilde{K}] \in \pi_1(M_K^n)$.

K: prime ($\Leftrightarrow M_K^n$: irreducible)

(i) |π₁(Mⁿ_K)| = ∞ ⇒ the universal covering space of Mⁿ_K is ℝ³.
p: ℝ³ → Mⁿ_K: the universal covering.
If l_K is trivial, each connected component of p⁻¹(K̃) is S¹.
↑ This contradicts to the Smith theory.
(ii) |π₁(Mⁿ_K)| < ∞ ⇒ the universal covering space of Mⁿ_K is S³.

(ii)-(a) $\underline{n = 3, 4, 5}$ Using results of [Inoue '23] and [Crans et. al. '19],

we can compute the order of $l_K \in \pi_1(M_K^n)$.

(ii)-(b)
$$\underline{n=2}$$

 $p: S^3 \to M_K^2$: the universal covering, $L := p^{-1}(\widetilde{K})$: an ori. link in S^3 .
 \Rightarrow (order of l_K) = $|\pi_1(M_K^2)|/|\{\text{components of } L\}|$.
In [Sakuma '90], the link L has been studied.

Summary	Definition	Universal covering of $Q_n(K)$ oo	Main result and its proof
000	00		00●000

(ii)-(b)
$$\underline{n=2}$$

 $p: S^3 \to M_K^2$: the universal covering, $L := p^{-1}(\widetilde{K})$: an ori. link in S^3 .
 \Rightarrow (order of l_K) = $|\pi_1(M_K^2)|/|\{\text{components of } L\}|$.
In [Sakuma '90], the link L has been studied.
 K : composite

$$K = K_1 \sharp K_2 \quad \Rightarrow (M_K^n, \widetilde{K}) \cong (M_{K_1}^n, \widetilde{K_1}) \sharp (M_{K_2}^n, \widetilde{K_2}) \\ \Rightarrow l_K = l_{K_1} \cdot l_{K_2} \in \pi_1(M_{K_1}^n) * \pi_1(M_{K_2}^n) \cong \pi_1(M_K^n).$$

Hence, if l_{K_1} and l_{K_2} are nontrivial, l_K is not a torsion element. <u>Remark</u> K: prime. $l_K \in \pi_1(M_K^n)$: trivial $\Leftrightarrow K$: 2-bridge knot and n = 2.

 $(K = K' \Leftrightarrow K \text{ and } K' \text{ are equivalent up to 2-bridge knot summands.})$

Theorem

$$H_2^Q(Q_3(K)) \cong \begin{cases} 0 & (K = 0_1), \ \mathbb{Z}/2\mathbb{Z} & (K = 3_1), \\ \mathbb{Z}/6\mathbb{Z} & (K = 5_1), \ \mathbb{Z} & (K : \text{otherwise}). \end{cases}$$

Theorem

$$H_2^Q(Q_4(K)) \cong \begin{cases} 0 & (K=0_1), & \mathbb{Z}/4\mathbb{Z} \quad (K=3_1), \\ \mathbb{Z} & (K: \text{ otherwise}). \end{cases}$$

Summary	Definition	Universal covering of $Q_n(K)$	Main result and its proof
			000000

Theorem

$$H_2^Q(Q_5(K)) \cong \begin{cases} 0 & (K=0_1), & \mathbb{Z}/10\mathbb{Z} \quad (K=3_1), \\ \mathbb{Z} & (K: \text{ otherwise}). \end{cases}$$

Theorem

$$\forall n > 5, H_2^Q(Q_n(K)) \cong \begin{cases} 0 & (K = 0_1), \\ \mathbb{Z} & (K : \text{otherwise}). \end{cases}$$

Corollary

(1)
$$H_2^Q(Q_n(K)) \cong 0 \Leftrightarrow K = 0_1 \ (n \in \mathbb{Z}_{>2}).$$

(2) $H_2^Q(Q_n(K)) \cong H_2^Q(Q_n(3_1)) \Leftrightarrow K = 3_1 \ (n = 3, 4, 5).$
(3) $H_2^Q(Q_3(K)) \cong H_2^Q(Q_3(5_1)) \Leftrightarrow K = 5_1.$

Summary	Definition	Universal covering of $Q_n(K)$	Main result and its proof
			000000

Thank you for your attention.