結び目 n－カンドルの 2 次カンドルホモロジー群

谷口雄大
田中心氏（東京学芸大学）との共同研究
大阪大学大学院理学研究科
結び目の数理 VI
December 23， 2023

Summary

- K : an oriented knot in $S^{3} \rightsquigarrow Q(K)$: the knot quandle of K The knot quandle is a complete invariant for oriented knots up to orientation.
- Eisermann established the covering theory of quandles, and computed the second quandle homology group $H_{2}^{Q}(Q(K))$.
- The knot n-quandle $Q_{n}(K)$ is a quotient of $Q(K)\left(n \in \mathbb{Z}_{>1}\right)$.
- Knot n-quandles are more treactable than knot quandles.

Main result

We determine the second quandle homology group $H_{2}^{Q}\left(Q_{n}(K)\right)$.

Theorem

$H_{2}^{Q}\left(Q_{2}(K)\right) \cong$
$\begin{cases}0 & \left(K \fallingdotseq 0_{1}\right), \\ \mathbb{Z} / 2 \mathbb{Z} \quad(K \fallingdotseq M(1 / 2, * / 3, * / 3)), ~\end{cases}$
$\{\mathbb{Z} / 4 \mathbb{Z} \quad(K \fallingdotseq M(1 / 2, * / 3, * / 5)), \quad \mathbb{Z} \quad(K:$ otherwise $)$.
($K \fallingdotseq K^{\prime} \Leftrightarrow K$ and K^{\prime} are equivalent up to 2-bridge knot summands.)

Theorem

$$
H_{2}^{Q}\left(Q_{3}(K)\right) \cong\left\{\begin{array}{lll}
0 & \left(K=0_{1}\right), & \mathbb{Z} / 2 \mathbb{Z} \\
\mathbb{Z} / 6 \mathbb{Z} & \left(K=5_{1}\right), & \left(K=3_{1}\right), \\
& (K: \text { otherwise }) .
\end{array}\right.
$$

Theorem

$$
H_{2}^{Q}\left(Q_{4}(K)\right) \cong\left\{\begin{array}{lll}
0 & \left(K=0_{1}\right), & \mathbb{Z} / 4 \mathbb{Z} \quad\left(K=3_{1}\right), \\
\mathbb{Z} & (K: \text { otherwise }) .
\end{array}\right.
$$

Theorem

$$
H_{2}^{Q}\left(Q_{5}(K)\right) \cong\left\{\begin{array}{lll}
0 & \left(K=0_{1}\right), & \mathbb{Z} / 10 \mathbb{Z} \quad\left(K=3_{1}\right) \\
\mathbb{Z} & (K: \text { otherwise })
\end{array}\right.
$$

Theorem

$\forall n>5, H_{2}^{Q}\left(Q_{n}(K)\right) \cong \begin{cases}0 & \left(K=0_{1}\right), \\ \mathbb{Z} & (K: \text { otherwise }) .\end{cases}$

Corollary

(1) $H_{2}^{Q}\left(Q_{n}(K)\right) \cong 0 \Leftrightarrow K=0_{1}\left(n \in \mathbb{Z}_{>2}\right)$.
(2) $H_{2}^{Q}\left(Q_{n}(K)\right) \cong H_{2}^{Q}\left(Q_{n}\left(3_{1}\right)\right) \Leftrightarrow K=3_{1}(n=3,4,5)$.
(3) $H_{2}^{Q}\left(Q_{3}(K)\right) \cong H_{2}^{Q}\left(Q_{3}\left(5_{1}\right)\right) \Leftrightarrow K=5_{1}$.

Quandle

Definition [Joyce '82, Matveev '82]

X : a non-empty set, $*: X^{2} \rightarrow X:$ a binary operation
$X=(X, *)$: a quandle
$\Leftrightarrow \bullet \forall x \in X, x * x=x$. $\quad \forall y \in X, S_{y}: X \rightarrow X ; x \mapsto x * y$: a bijection.

- $\forall x, y, z \in X,(x * y) * z=(x * z) *(y * z)$.

Example $\quad K$: an ori. knot in $S^{3}=\mathbb{R}^{3} \cup\{\infty\}, E(K)=S^{3} \backslash \operatorname{int} N(K)$.
$\overline{Q(K):=}\{\alpha: I \rightarrow E(K) \mid \alpha(0) \in \partial E(K), \alpha(1)=\infty\} /$ homotopy $\alpha * \beta:=\alpha \cdot \beta^{-1} \cdot($ a meridian loop at $\beta(0)$ in the + -direction $) \cdot \beta$.

Knot n-quandle

K, K^{\prime} : ori. 1-knots.
Fact • $Q\left(K^{\prime}\right) \cong Q(K) \Leftrightarrow K^{\prime} \sim K$ or $-K$! [Joyce '82, Matveev '82].

- $|Q(K)|<\infty \Leftrightarrow K=0_{1}$. $\left(\left|Q\left(0_{1}\right)\right|=1\right.$.)

Knot n-quandle

K, K^{\prime} : ori. 1-knots.
Fact - $Q\left(K^{\prime}\right) \cong Q(K) \Leftrightarrow K^{\prime} \sim K$ or $-K$! [Joyce '82, Matveev '82].

- $|Q(K)|<\infty \Leftrightarrow K=0_{1} .\left(\left|Q\left(0_{1}\right)\right|=1\right.$. $)$

Definition

$n \in \mathbb{Z}_{\geq 2}, Q_{n}(K):=Q(K) / x \sim S_{y}^{n}(x) \quad\left(S_{y}(x)=x * y\right)$.
$Q_{n}(K):=\left(Q_{n}(K), *\right)$: the knot n-quandle of K.

Fact

- $Q_{2}\left(4_{1}\right) \cong Q_{2}\left(5_{1}\right) . \quad \bullet\left|Q_{2}\left(3_{1}\right)\right|=3, \quad\left|Q_{3}\left(3_{1}\right)\right|=4$.
- $\left|Q_{n}(K)\right|=1 \Leftrightarrow K=0_{1}$ [Winker '84].
- $\forall X$: a finite quandle, $\exists n \in \mathbb{Z}_{\geq 2}$ s.t. $\operatorname{Hom}(Q(K), X) \stackrel{1: 1}{\leftrightarrow} \operatorname{Hom}\left(Q_{n}(K), X\right)$.

Covering, extension and universal covering

X, \tilde{X} : connected quandles, Λ : a group.

- $p: \tilde{X} \rightarrow X$: a covering $\Leftrightarrow p(\tilde{y})=p(\tilde{z})$ implies that $\forall \tilde{x} \in \tilde{X}, \tilde{x} * \tilde{y}=\tilde{x} * \tilde{z}$.
- \tilde{X} : an extension of X by a group $\Lambda(\Lambda \curvearrowright \tilde{X})$

$$
\Leftrightarrow \exists p: \tilde{X} \rightarrow X \text { s.t. }
$$

$$
\left\{\begin{array}{l}
\forall \lambda \in \Lambda, \forall \tilde{x}, \tilde{y} \in \tilde{X},(\lambda \cdot \tilde{x}) * \tilde{y}=\lambda \cdot(\tilde{x} * \tilde{y}) \text { and } \tilde{x} *(\lambda \cdot \tilde{y})=\tilde{x} * \tilde{y} . \\
\forall x \in X, \Lambda \curvearrowright p^{-1}(x): \text { free and transitive. }
\end{array}\right.
$$

- $p: \tilde{X} \rightarrow X$: a universal covering $\Leftrightarrow \forall \bar{p}: \bar{X} \rightarrow X$: a covering, $\exists \phi: \tilde{X} \rightarrow \bar{X}$: a quandle hom. s.t. $p=\bar{p} \circ \phi$.
Note $p: \tilde{X} \rightarrow X$: a quandle homomorphism.
p : a universal covering $\Rightarrow \tilde{X}$: an extension of X (by $\left.{ }^{\exists} \Lambda\right) \Rightarrow p$: a covering
- If \tilde{X} : an extension of X by a group Λ, " $\tilde{X} \cong X \times \Lambda$ ".
- If $p: \tilde{X} \rightarrow X$: a universal covering, $H_{2}^{Q}(X) \cong \Lambda_{\mathrm{ab}}$. ($H_{2}^{Q}(X)$: the second quandle homology group)
- If \tilde{X} : an extension of X by a group Λ, " $\tilde{X} \cong X \times \Lambda$ ".
- If $p: \tilde{X} \rightarrow X$: a universal covering, $H_{2}^{Q}(X) \cong \Lambda_{\mathrm{ab}}$. ($H_{2}^{Q}(X)$: the second quandle homology group)

Theorem [Eisermann '03]

K : an ori. knot, \hat{K} : the long knot obtained from K.
If K is nontrivial, then the following hold:
(1) $Q(\hat{K})$: an extension of $Q(K)$ by $\mathbb{Z}\left(=\left\langle l_{K}\right\rangle<\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)\right.$.
(2) $\exists p: Q(\hat{K}) \rightarrow Q(K):$ a universal covering.

Corollary [Eisermann '03]

$H_{2}^{Q}(Q(K))=0 \Leftrightarrow K=0_{1}$.
Goal To show the knot n-quandle version of the Eisermann's results.
K : an ori. knot, $n \in \mathbb{Z}_{\geq 2}$.
$\tau^{n} K$: the n-twist spun K (=the 2 -knot obtained from K by n-twist spinning).
M_{K}^{n} : the n-fold branched covering space of S^{3} branched along K.

Theorem

If K is nontrivial and $n \geq 2$, then the following hold:
(1) $Q\left(\tau^{n} K\right)$: an extension of $Q_{n}(K)$ by $\left\langle l_{K}\right\rangle\left(<\pi_{1}\left(M_{K}^{n}\right)\right)$, where $l_{K} \in \pi_{1}\left(M_{K}^{n}\right) \cong \operatorname{Ker}\left(\pi_{1}(E(K)) \rightarrow \mathbb{Z} / n \mathbb{Z} ; m_{K} \mapsto 1\right) /\left\langle\left\langle m_{K}^{n}\right\rangle\right\rangle$. (2) $\exists p: Q\left(\tau^{n} K\right) \rightarrow Q_{n}(K)$: a universal covering.

Corollary

$$
H_{2}^{Q}\left(Q_{n}(K)\right) \cong\left\langle l_{K}\right\rangle<\pi_{1}\left(M_{K}^{n}\right)
$$

To compute $H_{2}^{Q}\left(Q_{n}(K)\right)$, it is sufficient to determine the order of l_{K}. \widetilde{K} : the branching set of $M_{K}^{n} \Rightarrow l_{K}=[\widetilde{K}] \in \pi_{1}\left(M_{K}^{n}\right)$.
\underline{K} : prime ($\Leftrightarrow M_{K}^{n}$: irreducible)
(i) $\left|\pi_{1}\left(M_{K}^{n}\right)\right|=\infty \Rightarrow$ the universal covering space of M_{K}^{n} is \mathbb{R}^{3}.
$p: \mathbb{R}^{3} \rightarrow M_{K}^{n}$: the universal covering.
If l_{K} is trivial, each connected component of $p^{-1}(\widetilde{K})$ is S^{1}.
\uparrow This contradicts to the Smith theory.

To compute $H_{2}^{Q}\left(Q_{n}(K)\right)$, it is sufficient to determine the order of l_{K}. \widetilde{K} : the branching set of $M_{K}^{n} \Rightarrow l_{K}=[\widetilde{K}] \in \pi_{1}\left(M_{K}^{n}\right)$.
K : prime ($\Leftrightarrow M_{K}^{n}$: irreducible)
(i) $\left|\pi_{1}\left(M_{K}^{n}\right)\right|=\infty \Rightarrow$ the universal covering space of M_{K}^{n} is \mathbb{R}^{3}.
$p: \mathbb{R}^{3} \rightarrow M_{K}^{n}$: the universal covering.
If l_{K} is trivial, each connected component of $p^{-1}(\widetilde{K})$ is S^{1}.
\uparrow This contradicts to the Smith theory.
(ii) $\left|\pi_{1}\left(M_{K}^{n}\right)\right|<\infty \Rightarrow$ the universal covering space of M_{K}^{n} is S^{3}.
(ii)-(a) $n=3,4,5$

Using results of [Inoue '23] and [Crans et. al. '19],
we can compute the order of $l_{K} \in \pi_{1}\left(M_{K}^{n}\right)$.
(ii)-(b) $\underline{n=2}$
$p: S^{3} \rightarrow M_{K}^{2}$: the universal covering, $L:=p^{-1}(\widetilde{K})$: an ori. link in S^{3}.
$\Rightarrow\left(\right.$ order of $\left.l_{K}\right)=\left|\pi_{1}\left(M_{K}^{2}\right)\right| / \mid\{$ components of $L\} \mid$.
In [Sakuma '90], the link L has been studied.
(ii)-(b) $n=2$
$p: S^{3} \rightarrow M_{K}^{2}$: the universal covering, $L:=p^{-1}(\widetilde{K})$: an ori. link in S^{3}.
$\Rightarrow \quad\left(\right.$ order of $\left.l_{K}\right)=\left|\pi_{1}\left(M_{K}^{2}\right)\right| / \mid\{$ components of $L\} \mid$.
In [Sakuma '90], the link L has been studied.
K: composite

$$
\begin{aligned}
K=K_{1} \sharp K_{2} & \Rightarrow\left(M_{K}^{n}, \widetilde{K}\right) \cong\left(M_{K_{1}}^{n}, \widetilde{K_{1}}\right) \sharp\left(M_{K_{2}}^{n}, \widetilde{K_{2}}\right) \\
& \Rightarrow l_{K}=l_{K_{1}} \cdot l_{K_{2}} \in \pi_{1}\left(M_{K_{1}}^{n}\right) * \pi_{1}\left(M_{K_{2}}^{n}\right) \cong \pi_{1}\left(M_{K}^{n}\right) .
\end{aligned}
$$

Hence, if $l_{K_{1}}$ and $l_{K_{2}}$ are nontrivial, l_{K} is not a torsion element.
Remark K : prime.
$l_{K} \in \pi_{1}\left(M_{K}^{n}\right):$ trivial $\Leftrightarrow K$: 2-bridge knot and $n=2$.

Theorem

$H_{2}^{Q}\left(Q_{2}(K)\right) \cong$
$\begin{cases}0 & \left(K \fallingdotseq 0_{1}\right), \\ \mathbb{Z} / 2 \mathbb{Z} \quad(K \fallingdotseq M(1 / 2, * / 3, * / 3)),\end{cases}$
$\{\mathbb{Z} / 4 \mathbb{Z} \quad(K \fallingdotseq M(1 / 2, * / 3, * / 5)), \quad \mathbb{Z} \quad(K$: otherwise $)$.
($K \fallingdotseq K^{\prime} \Leftrightarrow K$ and K^{\prime} are equivalent up to 2-bridge knot summands.)

Theorem

$$
H_{2}^{Q}\left(Q_{3}(K)\right) \cong\left\{\begin{array}{lll}
0 & \left(K=0_{1}\right), & \mathbb{Z} / 2 \mathbb{Z} \\
\mathbb{Z} / 6 \mathbb{Z} & \left(K=5_{1}\right), & \mathbb{Z}
\end{array}\left(K=3_{1}\right), ~(K: \text { otherwise }) .\right.
$$

Theorem

$$
H_{2}^{Q}\left(Q_{4}(K)\right) \cong\left\{\begin{array}{lll}
0 & \left(K=0_{1}\right), & \mathbb{Z} / 4 \mathbb{Z} \quad\left(K=3_{1}\right), \\
\mathbb{Z} & (K: \text { otherwise }) .
\end{array}\right.
$$

Theorem

$$
H_{2}^{Q}\left(Q_{5}(K)\right) \cong\left\{\begin{array}{lll}
0 & \left(K=0_{1}\right), & \mathbb{Z} / 10 \mathbb{Z} \quad\left(K=3_{1}\right) \\
\mathbb{Z} & (K: \text { otherwise })
\end{array}\right.
$$

Theorem

$\forall n>5, H_{2}^{Q}\left(Q_{n}(K)\right) \cong \begin{cases}0 & \left(K=0_{1}\right), \\ \mathbb{Z} & (K: \text { otherwise }) .\end{cases}$

Corollary

(1) $H_{2}^{Q}\left(Q_{n}(K)\right) \cong 0 \Leftrightarrow K=0_{1}\left(n \in \mathbb{Z}_{>2}\right)$.
(2) $H_{2}^{Q}\left(Q_{n}(K)\right) \cong H_{2}^{Q}\left(Q_{n}\left(3_{1}\right)\right) \Leftrightarrow K=3_{1}(n=3,4,5)$.
(3) $H_{2}^{Q}\left(Q_{3}(K)\right) \cong H_{2}^{Q}\left(Q_{3}\left(5_{1}\right)\right) \Leftrightarrow K=5_{1}$.

Thank you for your attention.

