Quasitoric 組み紐群の最小生成系について

大森 源城
芝浦工業大学
2023年12月26日結び目の数理VI＠東京女子大学

B_{n} ：the classical braid group of $n \geq 1$ strands．

Fact

－$B_{1}=1, B_{2}=\left\langle\sigma_{1}\right\rangle \cong \mathbb{Z}$ ．
－$B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \mid \sigma_{i} \rightleftarrows \sigma_{j}(|j-i| \geq 2), \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle$ ．
－For $n \geq 3, B_{n}$ is generated by two element．$\left(\leftarrow \mathrm{B}_{n}=\left\langle\sigma_{1}\right.\right.$, ケ $\left.\left.\left.\ldots\right\rangle\right\rangle\right)$

Theorem（Alexender（1923））

Every link is represented by a closure of a braid．

Definition

－A torus link（resp．a torus knot）is a link（resp．a knot）which is included in a standardly embedded torus in S^{3} or \mathbb{R}^{3} ．
－A toric braid is a braid whose closure is a torus link．
For $n \geq 2$ and $m \geq 1$ ，

$$
\beta(n, m):=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m} \in B_{n} .
$$

$$
(\overbrace{\substack{\Pi_{1}(n, 1) \\ \beta\left(\sigma_{n-1}\right.}}^{\sigma_{2} \cdots \cdots_{n-1}})
$$

Remark

A closure of $\beta(n, m)$ is a torus link．

Figure：The closure of $\beta(4,3)$ ．

Manturov（＇02）introduced a n－quasi toric braid in B_{n} that is a generalization of $\beta(n, m)$ and has a form

$$
\left(\sigma_{1}^{\varepsilon_{1}^{1}} \sigma_{2}^{\varepsilon_{2}^{1}} \cdots \sigma_{n-1}^{\varepsilon_{n-1}^{1}}\right)\left(\sigma_{1}^{\varepsilon_{1}^{2}} \sigma_{2}^{\varepsilon_{2}^{2}} \cdots \sigma_{n-1}^{\varepsilon_{n-1}^{2}}\right) \cdots\left(\sigma_{1}^{\varepsilon_{1}^{m}} \sigma_{2}^{\varepsilon_{2}^{m}} \cdots \sigma_{n-1}^{\varepsilon_{n-1}^{m}}\right) \in B_{n}
$$

where $\varepsilon_{i}^{j} \in\{ \pm 1\}$ ．

$\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{3}\right)\left(\sigma_{1}^{-1} \sigma_{2} \sigma_{3}\right)$

Theorem（Manturov（＇02），Lamm（＇99））

A link represented by a closure of a n－braid is also represented by a closure of a n－quasitoric braid．
$Q B_{n}:=\{n$－quasi toric braids $\} \subset B_{n}$.

Theorem（Manturov（＇02））

$Q B_{n}$ is a subgroup of B_{n} ．

$$
※ Q B_{1}=B_{1}=1, Q B_{2}=B_{2}=\left\langle\sigma_{1}\right\rangle \cong \mathbb{Z}
$$

Main theorems：

Theorem（O．（arXiv：2301．07917））

－For $n \geq 3$ is odd，$Q B_{n}$ is generated by $\frac{n+1}{2}$ elements．
－For $n \geq 4$ is even，$Q B_{n}$ is generated by $\frac{n+2}{2}$ elements．

Theorem（O．（arXiv：2301．07917））

$$
H_{1}\left(Q B_{n} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}^{\frac{n-1}{2}} \oplus \mathbb{Z}_{n} & \text { if } n \geq 3 \text { is odd } \\ \mathbb{Z}^{\frac{n}{2}} \oplus \mathbb{Z}_{\frac{n}{2}} & \text { if } n \geq 4 \text { is even }\end{cases}
$$

\rightsquigarrow The generating set for $Q B_{n}$ above is minimal！！
These results above for $n=3$ are obtained from results of Shigeta（＇ 23 ）．

An explicit minimal generating set

$$
\begin{aligned}
\delta_{0} & :=\beta(n, 1)=\sigma_{1} \sigma_{2} \cdots \sigma_{n-1} \in Q B_{n} \\
\delta_{i} & :=\sigma_{1} \cdots \sigma_{n-i-1} \sigma_{n-i}^{-1} \cdots \sigma_{n-1}^{-1} \in Q B_{n} \quad(1 \leq i \leq n-1),
\end{aligned}
$$

i．e．$\delta_{0}=\sigma_{1} \cdots \sigma_{n-1}, \delta_{1}=\sigma_{1} \cdots \sigma_{n-2} \sigma_{n-1}^{-1}, \delta_{2}=\sigma_{1} \cdots \sigma_{n-3} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1}$ ，

$$
\cdots, \delta_{n-2}=\sigma_{1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}, \delta_{n-1}=\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1} .
$$

Theorem（O．（arXiv：2301．07917））

－For $n \geq 3$ is odd，$Q B_{n}$ is generated by $\delta_{i}\left(0 \leq i \leq \frac{n-1}{2}\right)$ ．
－For $n \geq 4$ is even，$Q B_{n}$ is generated by $\delta_{i}\left(0 \leq i \leq \frac{n}{2}\right)$ ．
S_{n} ：the symmetric group of degree n ．
The action $B_{n} \curvearrowright\{1,2, \ldots, n\}$ induces the surjective homomorphism
$P B_{n}:=\operatorname{ker} \Psi$ ：the pure braid group．$\stackrel{\sigma_{i}}{ }(i+1)$
Then，we have the following exact sequence：

$$
1 \longrightarrow P B_{n} \longrightarrow B_{n} \xrightarrow{\Psi} S_{n} \longrightarrow 1 .
$$

$\rho:=\left(\begin{array}{ll}1 & 2 \cdots n\end{array}\right) \in S_{n}$ ．
Since $\Psi\left(\sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \cdots \sigma_{n-1}^{\varepsilon_{n-1}}\right)=\rho \in S_{n}$ for any $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n-1} \in\{ \pm 1\}$ ，
$\Psi\left(Q B_{n}\right)=\langle\rho\rangle \cong \mathbb{Z}_{n}$.

Proposition（Manturov（＇02））

$P B_{n} \subset Q B_{n}$ ．
Thus，we have the exact sequence

$$
1 \longrightarrow P B_{n} \longrightarrow Q B_{n} \xrightarrow{\Psi} \mathbb{Z}_{n}[\rho] \longrightarrow 1 .
$$

A finte presentation for $P B_{n}$

For $1 \leq i<j \leq n$ ，

Proposition（Namanya（＇23），O．）

For $n \geq 1, P B_{n}$ admits the presentation with generators $t_{i, j}$ for $1 \leq i<j \leq n$ and the following defining relations：
（1）$t_{i, j} t_{k, l}=t_{k, l} t_{i, j} \quad$ for $j<k, k \leq i<j \leq l$ ，or $l<i$ ，
（2）$t_{j, m-1}^{-1} t_{k, m-1} t_{j, l-1} t_{i, k-1} t_{i, l-1}^{-1}=t_{i, l-1}^{-1} t_{i, k-1} t_{j, l-1} t_{k, m-1} t_{j, m-1}^{-1} \quad$ for $1 \leq i<j<k<l<m \leq n$.
（左边）
11
$t_{j, m-1}^{-1} t_{k, m-1} t_{j, l-1} t_{i}, k-1 x_{i, l-1}^{-1}$

（右辺）
11
$\lambda_{i, l-1}^{-1} t_{i, k-1} t_{j, l-1} t_{k, m-1} t_{j, m-1}^{-1}$

$$
=
$$

A finite presentation for $Q B_{n}$

Proposition

For $n \geq 1, Q B_{n}$ admits the presentation with generators δ_{0} and $t_{i, j}$ for $1 \leq i<j \leq n$ ，and the following defining relations：$\quad{ }^{\pi} \sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$
（1）$t_{i, j} t_{k, l}=t_{k, l} t_{i, j} \quad$ for $j<k, k \leq i<j \leq l$ ，or $l<i$ ，
（2）$t_{j, m-1}^{-1} t_{k, m-1} t_{j, l-1} t_{i, k-1} t_{i, l-1}^{-1}=t_{i, l-1}^{-1} t_{i, k-1} t_{j, l-1} t_{k, m-1} t_{j, m-1}^{-1} \quad$ for $1 \leq i<j<k<l<m \leq n$,
（3）$\delta_{0}^{n}=t_{1, n}$ ，
（9）$\delta_{0} t_{i, j} \delta_{0}^{-1}= \begin{cases}t_{i+1, j+1} & \text { for } j<n, \\ t_{1, n} & \text { for }(i, j)=(1, n), \\ t_{2, n}^{-1} t_{1, i}^{-1} t_{2, i} t_{i+1, n} t_{1, n} & \text { for } j=n \text { and } i>1 .\end{cases}$

Theorem（O．（again））

$$
\text { Put } X=t_{1, n-1} \delta_{0}^{-n+2} \text {. }
$$

$$
H_{1}\left(Q B_{n} ; \mathbb{Z}\right) \cong \begin{cases}\left\langle t_{1, j}\left(2 \leq j \leq \frac{n-1}{2}\right), \delta_{0}, X \mid X^{n}=1\right\rangle & \text { if } n \geq 3 \text { is odd } \\ \left\langle t_{1, j}\left(2 \leq j \leq \frac{n}{2}\right), \delta_{0}, X \left\lvert\, X^{\frac{n}{2}}=1\right.\right\rangle & \text { if } n \geq 4 \text { is even }\end{cases}
$$

Future works

Recall：$B_{n}=\Psi^{-1}\left(S_{n}\right), P B_{n}=\Psi^{-1}(\{1\})$ ，and $Q B_{n}=\Psi^{-1}(\langle\rho\rangle)$ ．
－For $n \geq 3, B_{n}$ is generated by two elements．
－For $n \geq 3, P B_{n}$ is generated by $\binom{n}{2}$ elements．
－For $n \geq 3$ is odd，$Q B_{n}$ is generated by $\frac{n+1}{2}$ elements．
－For $n \geq 4$ is even，$Q B_{n}$ is generated by $\frac{n+2}{2}$ elements． $\operatorname{Mod}_{0, n}$ ：the mapping class group of 2－sphere with n marked points． $\bar{\Psi}: \operatorname{Mod}_{0, n} \rightarrow S_{n}$ ：the natural sujective homomorphism．
－For $n \geq 3, \operatorname{Mod}_{0, n}=\bar{\Psi}^{-1}\left(S_{n}\right)$ is generated by two elements．
－For $n \geq 3, \underline{\operatorname{PMod}}_{0, n}=\bar{\Psi}^{-1}(\{1\}) ~ \underset{~ i s ~ g e n e r a t e d ~ b y ~}{\leftarrow}$ the pure $M C G\binom{n-1}{2}-1$ elements．
－For $n \geq 1, \operatorname{LMod}_{2 n+2}=\bar{\Psi}^{-1}\left(\underline{W}_{2 n+2}\right)$ is ${ }^{\text {sure }}$ generated by three elements． Tthe liftarle MCG $\cong\left(S_{n} \times S_{n}\right) \times \mathbb{Z}_{2}$

Problem

－For given subgroup H of S_{n} ，determine the minimum number of generators for $\Psi^{-1}(H)$ or $\bar{\Psi}^{-1}(H)$ ．
－When does the number depend on n ？

Thank you for your attention！！

