Shadow-complexity & trisection genus

Hironobu Naoe (Chuo Univ.) joint work w/ Masaki Ogawa (Tohoku Univ. MathCCS)

結び目の数理 VI @東京女子大学

December 24, 2023

Table of contents

1 Trisections

2 Shadows

* Suppose any manifold is compact, connected, oriented and smooth.

Trisections (1/2)

W: a closed 4-manifold.

Definition

A trisection \mathcal{T} of W is a decomposition $W = W_1 \cup W_2 \cup W_3$

s.t. for some $g,k_1,k_2,k_3\in\mathbb{Z}_{\geq 0}$,

$$lacksymbol{W}_i\cong
atural k_i(S^1 imes B^3)$$
,

• $W_i \cap W_j \cong ig g(S^1 imes B^2)$, and

•
$$W_1 \cap W_2 \cap W_3 \cong \Sigma_g$$
.

 $g(\mathcal{T}):=g$ is called the *genus* of \mathcal{T} .

Theorem (Gay and Kirby, '16) Any closed 4-manifold admits a trisection.

Trisections (2/2)

Definition

The *trisection genus* of W is

 $g(W) := \min\{ g(\mathcal{T}) \mid \mathcal{T} \text{ is a trisection of } W \}.$

<u>Note</u> $g : {closed 4-mfd.} \rightarrow \mathbb{Z}_{\geq 0}$ is an invariant.

Classification

•
$$g(W) = 0 \iff W \cong S^4$$

•
$$g(W) = 1 \iff W \cong \pm \mathbb{C}\mathrm{P}^2$$
 or $S^1 \times S^3$.

 $\begin{array}{l} \hline \text{[Meier and Zupan, '17]} \\ g(W) = 2 \Longleftrightarrow W \cong \pm 2\mathbb{C}\mathrm{P}^2, \ \mathbb{C}\mathrm{P}^2 \# \overline{\mathbb{C}\mathrm{P}^2}, \ 2(S^1 \times S^3), \\ \pm \mathbb{C}\mathrm{P}^2 \# (S^1 \times S^3) \text{ or } S^2 \times S^2. \end{array}$

(Conjecture by Meier) An irreducible 4-mfd. w/ g = 3 is either
 S_p or S'_p for some p∈Z, where S_p and S'_p are Pao's manifolds.

Table of contents

1 Trisections

Shadows (1/2)

Local models of a simple polyhedron X :

Definition

A shadow of a closed 4-manifold W is a simple polyhedron $X \subset W$ s.t. $\blacksquare \forall p \in X$, $Nbd(p; X) \subset \exists B^3 \subset W$ (local-flatness), and $\blacksquare W \setminus N(X) \cong \natural k(S^1 \times B^3).$

<u>Remark</u> A shadow is a 2-skeleton of a 4-manifold.

Any closed 4-manifold admits a shadow [Turaev, '94]. 6/15

Shadows (2/2)

c(X) := # of true vertices (X) of X.

The shadow-complexity and the special shadow-complexity of W are $sc(W) := min \{ c(X) \mid X \text{ is a shadow of } W \}$ $sc^{sp}(W) := min \left\{ c(X) \mid X \text{ is a shadow of } W \text{ s.t.} \atop \text{all regions are open 2-disks} \right\}.$

<u>Note</u> sc, sc^{sp} : {closed 4-mfd.} $\rightarrow \mathbb{Z}_{\geq 0}$ are invariants.

• [Costantino, '06] $sc^{sp}(W) = 0$ $\iff sc^{sp}(W) \le 1$ $\iff W \cong S^4, \pm \mathbb{C}P^2, \pm 2\mathbb{C}P^2, \mathbb{C}P^2 \# \overline{\mathbb{C}P^2} \text{ or } S^2 \times S^2.$ • [Martelli, '11] sc(W) = 0.• [Koda, Martelli and N., '22] $sc^*(W) \le 1.$

Table of contents

1 Trisections

2 Shadows

Results (1/6)

X: simple polyhedron

Fix $r \in \mathbb{R}_{\geq 0}$ (*weight*). Define $c_r(X)$ as follows:

if $oldsymbol{X}$ is not a closed surface, set

$$c_r(X):=c(X)+\sum_{R\,:\, ext{region}}rig(1-\chi(R)ig),$$
 and set $c_r(S^2):=0.$

 $\begin{array}{l} \underline{\mathsf{Remark}} \ X \ \text{is a closed surface except for } S^2 \\ \implies X \ \text{can not be a shadow of any closed 4-manifold.} \end{array}$

Definition

The *r*-weighted shadow-complexity of *W* is

$$\operatorname{sc}_r(W) := \min\{c_r(X) \mid X ext{ is a shadow of } W\}$$

<u>Note</u> sc_r: {closed 4-mfd.} \rightarrow { $a + rb \mid a, b \in \mathbb{Z}_{\geq 0}$ } is an invariant.

Results (2/6)

The value $1 - \chi(R)$ in the definition

$$c_r(X) = c(X) + \sum_{R : ext{region}} rig(1 - \chi(R)ig)$$

means the number of arcs cutting $oldsymbol{R}$ open into a disk.

The collection Γ of such arcs is called a *cut system* for X.

<u>Note</u> $S(X) \cup \Gamma$ is a 1-skeleton of X and also of W.

Proposition 1 (Ogawa-N.)

For any $r,r'\in\mathbb{R}_{\geq0}$ with $r\leq r'$,

$$\operatorname{sc}(W) \le \operatorname{sc}_r(W) \le \operatorname{sc}_{r'}(W) \le \operatorname{sc}^{\operatorname{sp}}(W).$$

Moreover, $\operatorname{sc}(W) = \operatorname{sc}_0(W)$, and $\operatorname{sc}_r(W) = \operatorname{sc}^{\operatorname{sp}}(W)$ if $r \geq 2$.

Results (3/6)

Proposition 2 (Ogawa-N.)

For any $r \in \mathbb{R}_{>0}$, sc_r is finite-to-one.

(i.e. for any $a\in\mathbb{R}$, $\#\{W\mid\mathrm{sc}_r(W)=a\}<\infty$.)

• sc is NOT finite-to-one (e.g. $sc(k\mathbb{C}P^2) = 0$ for any $k \in \mathbb{Z}$).

■ sc^{sp} is finite-to-one [Costantino, '06] (c.f. [Martelli, '05]).

Theorem (Martelli, '05)

For a link $L \subset \partial(k(S^1 \times B^3))$, there exist at most finitely many closed 4-manifolds (up to diffeo.) obtained from $k(S^1 \times B^3)$ by ataching 2-handles along L and some 3- and 4-handles.

Results (4/6)

Theorem 3 (Ogawa-N.)

For any closed 4-manifold W and any $r \geq 1/2$,

 $g(W) \leq 2 + 2\mathrm{sc}_r(W).$

<u>Remark</u> When r = 1/2, the inequality is the best possible:

Results (5/6)

Theorem 3 (Ogawa-N.) For any closed 4-manifold W and any r > 1/2, $q(W) \leq 2 + 2\mathrm{sc}_r(W).$ Sketch of proof $\begin{array}{l} \displaystyle \frac{\text{Sketch of proof}}{X \text{ and } \Gamma \text{ define a trisection } \mathcal{T}} : \left\{ \begin{array}{l} \displaystyle W_1 := N(S(X) \cup \Gamma), \\ \displaystyle W_2 := N(\text{regions} \cup \tau), \\ \displaystyle W_3 := W \setminus \operatorname{Int}(W_1 \cup W_2), \end{array} \right. \end{array} \right.$ where $\tau \subset \partial W_1$ is an unknotting tunnel of ∂ (regions). $\rightsquigarrow g(\mathcal{T}) = 1 + \# au$ $= 1 + (2 \operatorname{rank} \pi_1(S(X)) + \#\Gamma) = 3 + 2c_{1/2}(X)$ \rightsquigarrow destabilization

Results (6/6)

We focus on the case r = 1/2 due to $g(W) \le 2 + 2\operatorname{sc}_{1/2}(W)$. <u>Recall</u> $\operatorname{sc}_{1/2}(W) \in \frac{1}{2}\mathbb{Z}_{\ge 0} = \{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\}$.

Theorem 4 (Ogawa-N.) $sc_{1/2}(W) = 0$ $\iff W \cong S^4, \pm \mathbb{CP}^2, \pm 2\mathbb{CP}^2, \mathbb{CP}^2 \# \overline{\mathbb{CP}^2} \text{ or } S^2 \times S^2.$ $(\iff sc^{sp}(W) = 0 \text{ [Costaintino, '06] })$

Theorem 5 (Ogawa-N.) sc_{1/2}(W) = 1/2 $\iff W \cong \pm 3\mathbb{C}P^2, \ 2\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}, \ \mathbb{C}P^2 \# 2\overline{\mathbb{C}P^2}, \ S^1 \times S^3, \ \pm \mathbb{C}P^2 \# (S^1 \times S^3), \ \mathcal{S}_2, \ \mathcal{S}'_2 \text{ or } \mathcal{S}_3.$

Summary

Inequality between g(W) and $\mathrm{sc}_r(W)$

For any closed 4-manifold W and any $r\geq 1/2$,

$$g(W) \leq 2 + 2 \mathrm{sc}_r(W).$$
trisection genus r -weighted shadow-complexity

Classification of 4-maifolds w/ $sc_{1/2} \leq 1/2$

$$\mathbf{sc}_{1/2}(W) = 0$$

 $\Longleftrightarrow W \cong S^4, \ \pm \mathbb{C}\mathrm{P}^2, \ \pm 2\mathbb{C}\mathrm{P}^2, \ \mathbb{C}\mathrm{P}^2 \# \overline{\mathbb{C}\mathrm{P}^2} \ \mathrm{or} \ S^2 imes S^2.$

$$\bullet \operatorname{sc}_{1/2}(W) = 1/2$$

 $\iff W \cong \pm 3\mathbb{C}\mathrm{P}^2, \ 2\mathbb{C}\mathrm{P}^2 \# \overline{\mathbb{C}\mathrm{P}^2}, \ \mathbb{C}\mathrm{P}^2 \# 2\overline{\mathbb{C}\mathrm{P}^2}, \\ S^1 \times S^3, \ \pm \mathbb{C}\mathrm{P}^2 \# (S^1 \times S^3), \ \mathcal{S}_2, \ \mathcal{S}_2' \text{ or } \mathcal{S}_3.$

Thank you very much! 15/15