Shadow－complexity \＆trisection genus

Hironobu Naoe（Chuo Univ．）
joint work w／Masaki Ogawa（Tohoku Univ．MathCCS）
結び目の数理 VI＠東京女子大学
December 24， 2023

Table of contents

1 Trisections

2 Shadows

3 Results

* Suppose any manifold is compact, connected, oriented and smooth.

Trisections (1/2)

W : a closed 4-manifold.

Definition

A trisection \mathcal{T} of \boldsymbol{W} is a decomposition $\boldsymbol{W}=W_{1} \cup W_{2} \cup W_{3}$ s.t. for some $g, k_{1}, k_{2}, k_{3} \in \mathbb{Z}_{\geq 0}$,

- $W_{i} \cong \sharp k_{i}\left(S^{1} \times B^{3}\right)$,
- $W_{i} \cap W_{j} \cong দ g\left(S^{1} \times B^{2}\right)$, and
- $W_{1} \cap W_{2} \cap W_{3} \cong \Sigma_{g}$.
$g(\mathcal{T}):=\boldsymbol{g}$ is called the genus of $\boldsymbol{\mathcal { T }}$.

Theorem (Gay and Kirby, '16)
Any closed 4-manifold admits a trisection.

Trisections (2/2)

Definition

The trisection genus of \boldsymbol{W} is

$$
g(W):=\min \{g(\mathcal{T}) \mid \mathcal{T} \text { is a trisection of } W\} .
$$

Note $\boldsymbol{g}:\{$ closed 4-mfd. $\} \rightarrow \mathbb{Z}_{\geq 0}$ is an invariant.
Classification

- $g(W)=0 \Longleftrightarrow W \cong S^{4}$.
$\square g(W)=1 \Longleftrightarrow W \cong \pm \mathbb{C} P^{2}$ or $S^{1} \times S^{3}$.
- [Meier and Zupan, '17]

$$
\begin{aligned}
g(W)=2 \Longleftrightarrow W \cong & \pm 2 \mathbb{C} P^{2}, \mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}}, 2\left(S^{1} \times S^{3}\right), \\
& \pm \mathbb{C} P^{2} \#\left(S^{1} \times S^{3}\right) \text { or } S^{2} \times S^{2}
\end{aligned}
$$

- (Conjecture by Meier) An irreducible 4 -mfd. w/ $\boldsymbol{g}=3$ is either \mathcal{S}_{p} or \mathcal{S}_{p}^{\prime} for some $\boldsymbol{p} \in \mathbb{Z}$, where \mathcal{S}_{p} and \mathcal{S}_{p}^{\prime} are Pao's manifolds.

Table of contents

1 Trisections

2 Shadows

3 Results

Shadows (1/2)

Local models of a simple polyhedron \boldsymbol{X} :

true vertex
singular set $S(X)$

Definition

A shadow of a closed 4 -manifold W is a simple polyhedron $\boldsymbol{X} \subset \boldsymbol{W}$ s.t. $\quad{ }^{\forall} \boldsymbol{p} \in \boldsymbol{X}, \operatorname{Nbd}(\boldsymbol{p} ; \boldsymbol{X}) \subset{ }^{\exists} \boldsymbol{B}^{3} \subset \boldsymbol{W}$ (local-flatness), and
$\square W \backslash N(X) \cong \natural k\left(S^{1} \times B^{3}\right)$.
Remark $■$ A shadow is a 2 -skeleton of a 4 -manifold.

- Any closed 4 -manifold admits a shadow [Turaev, '94].

Shadows (2/2)

$c(X):=\#$ of true vertices

The shadow-complexity and the special shadow-complexity of \boldsymbol{W} are

$$
\begin{aligned}
& \operatorname{sc}(W):=\min \{c(X) \mid X \text { is a shadow of } W\} \\
& \operatorname{sc}^{\mathrm{sp}}(W):=\min \left\{\begin{array}{c|l}
c(\boldsymbol{X}) & \begin{array}{l}
\boldsymbol{X} \text { is a shadow of } \boldsymbol{W} \text { s.t. } \\
\text { all regions are open 2-disks }
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Note sc, sc ${ }^{\text {sp }}:\{$ closed 4 -mfd. $\} \rightarrow \mathbb{Z}_{\geq 0}$ are invariants.

- [Costantino, '06]

$$
\mathrm{sc}^{\mathrm{sp}}(\boldsymbol{W})=0
$$

$\Longleftrightarrow \mathrm{sc}^{\mathrm{sp}}(\boldsymbol{W}) \leq 1$
$\Longleftrightarrow W \cong S^{4}, \pm \mathbb{C} P^{2}, \pm 2 \mathbb{C} P^{2}, \mathbb{C P}^{2} \# \overline{\mathbb{C P}}{ }^{2}$ or $S^{2} \times S^{2}$.

- [Martelli, '11] $\operatorname{sc}(\boldsymbol{W})=0$.
$■$ [Koda, Martelli and N., '22] sc* $(\boldsymbol{W}) \leq 1$.

Table of contents

1 Trisections

2 Shadows

3 Results

Results (1/6)

\boldsymbol{X} : simple polyhedron
Fix $r \in \mathbb{R}_{\geq \mathbf{0}}$ (weight). Define $c_{r}(\boldsymbol{X})$ as follows:
if \boldsymbol{X} is not a closed surface, set

$$
c_{r}(X):=c(X)+\sum r(1-\chi(R)),
$$

and set $c_{r}\left(S^{2}\right):=0$.
Remark \boldsymbol{X} is a closed surface except for \boldsymbol{S}^{2}
$\Longrightarrow \boldsymbol{X}$ can not be a shadow of any closed 4 -manifold.

Definition

The r-weighted shadow-complexity of \boldsymbol{W} is

$$
\operatorname{sc}_{r}(\boldsymbol{W}):=\min \left\{c_{r}(\boldsymbol{X}) \mid \boldsymbol{X} \text { is a shadow of } \boldsymbol{W}\right\}
$$

Note $\mathrm{sc}_{r}:\{$ closed 4 -mfd. $\} \rightarrow\left\{\boldsymbol{a}+\boldsymbol{r} \boldsymbol{b} \mid \boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}_{\geq \mathbf{0}}\right\}$ is an invariant.

Results (2/6)

The value $1-\chi(R)$ in the definition

$$
c_{r}(X)=c(X)+\sum_{R: \text { region }} r(1-\chi(R))
$$

means the number of arcs cutting \boldsymbol{R} open into a disk.

The collection Γ of such arcs is called a cut system for \boldsymbol{X}.
Note $\boldsymbol{S}(\boldsymbol{X}) \cup \boldsymbol{\Gamma}$ is a 1 -skeleton of \boldsymbol{X} and also of \boldsymbol{W}.
Proposition 1 (Ogawa-N.)
For any $\boldsymbol{r}, \boldsymbol{r}^{\prime} \in \mathbb{R}_{\geq \mathbf{0}}$ with $\boldsymbol{r} \leq \boldsymbol{r}^{\prime}$,

$$
\operatorname{sc}(W) \leq \operatorname{sc}_{r}(W) \leq \mathrm{sc}_{r^{\prime}}(W) \leq \mathrm{sc}^{\mathrm{sp}}(\boldsymbol{W})
$$

Moreover, $\mathbf{s c}(\boldsymbol{W})=\operatorname{sc}_{\mathbf{0}}(\boldsymbol{W})$, and $\mathbf{s c}_{\boldsymbol{r}}(\boldsymbol{W})=\operatorname{sc}^{\mathrm{sp}}(\boldsymbol{W})$ if $\boldsymbol{r} \geq 2$.

Results (3/6)

Proposition 2 (Ogawa-N.)

For any $\boldsymbol{r} \in \mathbb{R}_{\mathbf{> 0}}, \mathbf{s c}_{\boldsymbol{r}}$ is finite-to-one.
(i.e. for any $\boldsymbol{a} \in \mathbb{R}, \#\left\{\boldsymbol{W} \mid \mathbf{s c}_{r}(\boldsymbol{W})=a\right\}<\infty$.)

- sc is NOT finite-to-one ($\underline{\text { e.g. }} \operatorname{sc}\left(\boldsymbol{k} \mathbb{C} \mathbf{P}^{2}\right)=0$ for any $k \in \mathbb{Z}$).
- $\mathbf{s c}^{\mathbf{s p}}$ is finite-to-one [Costantino, '06] (c.f. [Martelli, '05]).

Theorem (Martelli, '05)

For a link $L \subset \partial\left(k\left(S^{1} \times B^{3}\right)\right)$, there exist at most finitely many closed 4-manifolds (up to diffeo.) obtained from $k\left(S^{1} \times B^{3}\right)$ by ataching 2 -handles along L and some 3 - and 4 -handles.

Results (4/6)

Theorem 3 (Ogawa-N.)

For any closed 4-manifold W and any $r \geq 1 / 2$,

$$
g(W) \leq 2+2 \operatorname{sc}_{r}(W)
$$

Remark When $r=1 / 2$, the inequality is the best possible:

Results (5/6)

Theorem 3 (Ogawa-N.)
For any closed 4-manifold W and any $r \geq 1 / 2$,

$$
g(W) \leq 2+2 \operatorname{sc}_{r}(W)
$$

Sketch of proof
X and Γ define a trisection \mathcal{T} :
where $\tau \subset \partial W_{1}$ is an unknotting tunnel of ∂ (regions).
$\rightsquigarrow g(\mathcal{T})=1+\# \tau$

$$
=1+\left(2 \operatorname{rank} \pi_{1}(S(X))+\# \Gamma\right)=3+2 c_{1 / 2}(X)
$$

\rightsquigarrow destabilization

Results (6/6)

We focus on the case $r=1 / 2$ due to $g(W) \leq 2+2 \operatorname{sc}_{1 / 2}(W)$.
Recall $\mathrm{sc}_{1 / 2}(W) \in \frac{1}{2} \mathbb{Z}_{\geq 0}=\left\{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}$.
Theorem 4 (Ogawa-N.)

$$
\mathrm{sc}_{1 / 2}(W)=0
$$

$$
\Longleftrightarrow W \cong S^{4}, \pm \mathbb{C} P^{2}, \pm 2 \mathbb{C} P^{2}, \mathbb{C} P^{2} \# \overline{\mathbb{C P}}{ }^{2} \text { or } S^{2} \times S^{2}
$$

$$
\left(\Longleftrightarrow \operatorname{sc}^{\mathrm{sp}}(\boldsymbol{W})=0 \text { [Costaintino, '06] }\right)
$$

Theorem 5 (Ogawa-N.)

$$
\begin{aligned}
& \mathbf{s c}_{1 / 2}(W)=1 / 2 \\
& \Longleftrightarrow W \cong \pm 3 \mathbb{C P}^{2}, 2 \mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}}, \mathbb{C P}^{2} \# 2 \overline{\mathbb{C P}^{2}}, \\
& S^{1} \times S^{3}, \pm \mathbb{C P}^{2} \#\left(S^{1} \times S^{3}\right), \mathcal{S}_{2}, \mathcal{S}_{2}^{\prime} \text { or } \mathcal{S}_{3} .
\end{aligned}
$$

Summary

Inequality between $\boldsymbol{g}(\boldsymbol{W})$ and $\mathbf{s c}_{r}(\boldsymbol{W})$
For any closed 4-manifold W and any $r \geq 1 / 2$,

$$
\text { trisection genus } \underset{\sim}{g(W) \leq 2+2 \underset{\sim}{2 \operatorname{sc}_{r}}(W)} \underset{\sim}{\sim} \begin{aligned}
& \text { r-weighted } \\
& \text { shadow-complexity }
\end{aligned}
$$

Classification of 4-maifolds w/ $\mathrm{sc}_{1 / 2} \leq 1 / 2$
$■ \mathrm{sc}_{1 / 2}(W)=0$

$$
\Longleftrightarrow W \cong S^{4}, \pm \mathbb{C} P^{2}, \pm 2 \mathbb{C} P^{2}, \mathbb{C} P^{2} \# \overline{\mathbb{C}} \bar{P}^{2} \text { or } S^{2} \times S^{2}
$$

$■ \operatorname{sc}_{1 / 2}(W)=1 / 2$

$$
\begin{aligned}
\Longleftrightarrow W \cong & \pm 3 \mathbb{C} P^{2}, 2 \mathbb{C} P^{2} \# \overline{\mathbb{C P}^{2}}, \mathbb{C P}^{2} \# 2 \overline{\mathbb{C P}^{2}} \\
& S^{1} \times S^{3}, \pm \mathbb{C} P^{2} \#\left(S^{1} \times S^{3}\right), \mathcal{S}_{2}, \mathcal{S}_{2}^{\prime} \text { or } \mathcal{S}_{3}
\end{aligned}
$$

