Stable maps of 3-manifolds into the plane and two-bridge links

Gakuto Kato

Nihon University Graduate School of Integrated Basic Sciences

Based on a joint work with Kazuhiro Ichihara (Nihon University)

Mathematical Science of Knot VI, December 24, 2023. Tokyo Woman's Christian University

Stable map

Definition

$$\begin{split} M,N: \text{ smooth manifolds. } f,g:M\to N: \text{ smooth maps.} \\ f\sim g: \text{ right-left equivalent} & \stackrel{\mathsf{def}}{\Longleftrightarrow} {}^{\exists}\Phi:M\to M \text{ and } \phi:N\to N: \\ \text{diffeo. s.t. } g=\phi\circ f\circ\Phi^{-1}; \end{split}$$

$$\begin{array}{c} M \xrightarrow{f} N \\ \Phi \downarrow & \circlearrowleft & \downarrow \varphi \\ M \xrightarrow{g} N \end{array}$$

f is called a stable map $\stackrel{\text{def}}{\iff} {}^{\exists}U_f$: a neighborhood of f in $C^{\infty}(M, \mathbb{R}^2)$ s.t. ${}^{\forall}g \in U_f, f \sim g$.

Example

A Morse function $f: M \to \mathbb{R}$ is a stable map.

M: a closed orientable smooth 3-manifold. As a generalization of a Morse function we consider stable maps $M\to \mathbb{R}^2.$

Throughout the following, ${\cal M}$ denotes a closed orientable smooth 3-manifold.

Fact [c.f. Levine]

A stable map $f: M \to \mathbb{R}^2$ is locally given in one of the following:

•
$$(u, x, y) \mapsto (u, x) \cdots$$
 regular point $\in M$
• $(u, x, y) \mapsto (u, x^2 + y^2) \cdots$ definite fold point
• $(u, x, y) \mapsto (u, x^2 - y^2) \cdots$ indefinite fold point
• $(u, x, y) \mapsto (u, y^2 + ux - x^3) \cdots$ cusp point

ii, iii and iv are singular points.

and f globaly satisfies

•
$$f^{-1} \circ f(p) \cap S(f) = p$$
 for a cusp point p

① the restriction of f to S(f)- {cusp points} is an immersion with only normal crossings.

regular definite fold indefinite fold cusp

Definition

 $f:M\to \mathbb{R}^2$: a smooth map.

 $S(f) := \{ p \in M \mid \operatorname{rank}(df_p) < 2 \}$: the set of singular points of f.

the sets of definite fold, indefinite fold and cusp points are denoted by $S_0(f)$, $S_1(f)$ and C(f), respectively.

Fact [Levine, 1965]

The cusp points of each stable map $M \to \mathbb{R}^2$ can be eliminated by homotopy.

Theorem [Saeki,1996]

 $\exists f: M \to \mathbb{R}^2 \text{ s.t. } C(f) = \emptyset \text{ and } f(S_1(f)) \text{ is simple closed curves}$ $\stackrel{\text{iff}}{\longleftrightarrow} M$: a graph manifold.

Definition

 $f: M \to \mathbb{R}^2$: a stable map the singular fibers over non-simple crossings are of two types, type II² and type II³.

 $II^2(f)$: the set of singular fibers of type II^2 of f $II^3(f)$: the set of singular fibers of type II^3 of f.

Theorem [cf. lshikawa-Koda]

 ${}^{\forall}L$: a link in M. Then ${}^{\exists}f: M \to \mathbb{R}^2$ s.t. $C(f) = \emptyset$, $L \subset S_0(f)$ and $\mathbb{H}^3(f) = \emptyset$.

Theorem [Ishikawa-Koda,2017]

L: a link in S^3 , $\exists f: S^3 \to \mathbb{R}^2$: a stable map s.t. $C(f) = \emptyset$, $L \subset S_0(f)$ and $|\mathbb{II}^2(f)| = 1$ and $|\mathbb{II}^3(f)| = 0 \Leftrightarrow^{\text{iff}}$ the exterior of $L \approx^{\text{diffeo}}$ a 3-manifold obtained by Dehn filling the exterior of one of the six links L_1, L_2, \cdots, L_6 in S^3 along some of (possibly none of) boundary tori, where L_1, L_2, \cdots, L_6 are illustrated in the following.

Theorem [Furutani-Koda,2021]

L: a link in S^3 , $\exists f : S^3 \to \mathbb{R}^2$: a stable map s.t. $C(f) = \emptyset$, $L \subset S_0(f)$ and $|\mathbb{II}^2(f)| = 0$ and $|\mathbb{II}^3(f)| = 1 \Leftrightarrow$ the exterior of $L \Leftrightarrow$ a 3-manifold obtained by Dehn filling the exterior of one of the four links L'_1, L'_2, L'_3 and L'_4 in S^3 along some of (possibly none of) boundary tori.

Theorem [Ichihara-K.]

 $\forall L : a \text{ two-bridge } 2\text{-componets link in } S^3.$ Then $\exists f : S^3 \to \mathbb{R}^2$: a stable map s.t. $S_0(f) = L$ and $\mathbb{I}^2(f) = \emptyset$.

	Saeki	I-K	F-K	Ichihara-K
Link	Graph link	Six links	Four links	Two bridge link
	1	\$	\uparrow	\Downarrow
$type II^2$	0	1	0	0
$type II^3$	0	0	1	*

Example (Whitehead link)

Definition

 $f: M \to N$: a smooth map. $\forall p_1, p_2 \in M$, $p_1 \sim p_2 \stackrel{\text{def}}{\iff}$ they are contained in the same componet of the fibers of f. $W_f := M/_{\sim}$: the Stein factorization of f.

Proposition [Furutani-Koda,2017]

 $f: S^3 \to \mathbb{R}^2$: a stable map. Then $\exists g: S^3 \to \mathbb{R}^2$ s.t. the Stein factorization Q_g is obtained from Q_f by replacing each part homeomorphic to X with the model in the figure.

Thank you for your attention.

