SHORT-SS4: H^3 and H^4 regularities of the Poisson equation on polygonal domains

Takehiko Kinoshita1,2, Yoshitaka Watanabe3,4, and Mitsuhiro T. Nakao5

1 Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
2 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
3 Research Institute for Information Technology, Kyushu University, Fukuoka 812-8581, Japan
4 CREST, Japan Science and Technology Agency
5 National Institute of Technology, Sasebo College, Nagasaki 857-1193, Japan

Abstract. This paper presents two equalities of H^3 and H^4 semi-norms for the solutions of the Poisson equation in a two-dimensional polygonal domain. These equalities enable us to obtain higher order constructive a priori error estimates for finite element approximation of the Poisson equation with validated computing.

Keywords: Poisson equation, a priori estimates

1 Introduction

Consider the Poisson equation

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega
\end{cases} \tag{1a-1b}$$

with a multiply-connected polygonal domain $\Omega \subset \mathbb{R}^2$. The regularities of solutions of the equation (1a)-(1b) depend on the shape of Ω and f. For example, when Ω is convex and $f \in L^2(\Omega)$, it is well-known (e.g. Grisvard (1985)) that there exists a unique solution $u \in H^1_0(\Omega) \cap H^2(\Omega)$ of (1a)-(1b).

Recently, Hell, Ostermann and Sandbichler (2014, Lemma 2.4), and Hell and Ostermann (2014, Proposition 3) showed the following results.

Lemma 1. Let $\Omega = (0,1)^2$. Then all solutions to (1a)-(1b) lie in $H^3(\Omega)$ for $f \in H^1_0(\Omega)$. Moreover, for $f \in H^1_0(\Omega) \cap H^2(\Omega)$ the solution of (1a)-(1b) lies in $H^4(\Omega)$.

Remark 1. The assumption $f \in H^1_0(\Omega)$ is essential at Lemma 1. For example, Hell and Ostermann (2014) pointed out that, in the case of $f = 1$, the solution is not in $H^3(\Omega)$ even though $f \in C^\infty(\Omega)$.
2 A priori error estimations

Higher regularities of the solutions for the Poisson equation such as Lemma 1 will lead us to higher order error estimations for finite element approximate solutions of (1a)-(1b). For example, a result by Nakao, Yamamoto and Kimura (1998) strongly suggests that when \(f \in H^1_0(\Omega) \) and a solution \(u \) of (1a)-(1b) lies in \(H^3(\Omega) \), for \(P2 \) (or \(Q2 \)) finite element approximation \(u_h \) of \(u \), there exists numerically determined \(C_2 > 0 \) satisfying

\[
\| u - u_h \|_{H^1_0(\Omega)} \leq C_2 h^2 |u|_{H^3(\Omega)}. \tag{2}
\]

Here, \(h \) shows the mesh size, \(\| u \|_{H^1_0(\Omega)} \) and \(|u|_{H^3(\Omega)} \) are \(H^1_0 \) norm and \(H^3 \) semi-norm of \(u \) defined by

\[
\| u \|_{H^1_0(\Omega)} := |u|_{H^1(\Omega)} = \| \nabla u \|_{L^2(\Omega)} = \sqrt{\| u_{x_1} \|_{L^2(\Omega)}^2 + \| u_{x_2} \|_{L^2(\Omega)}^2},
\]

\[
|u|_{H^3(\Omega)} := \sqrt{\| u_{x_1 x_1 x_1} \|_{L^2(\Omega)}^2 + 3 \| u_{x_1 x_2 x_2} \|_{L^2(\Omega)}^2 + \| u_{x_2 x_2 x_2} \|_{L^2(\Omega)}^2},
\]

respectively. Moreover, if \(u \) has sufficient regularities and \(u_h \) is a \(P3 \) (or \(Q3 \)) finite element approximation, there also exists \(C_3 > 0 \) such that

\[
\| u - u_h \|_{H^1_0(\Omega)} \leq C_3 h^3 |u|_{H^4(\Omega)} \tag{3},
\]

where \(|u|_{H^4(\Omega)} \) is \(H^4 \) semi-norm of \(u \) defined by

\[
|u|_{H^4(\Omega)} := \left(\| u_{x_1 x_1 x_1 x_1} \|_{L^2(\Omega)}^2 + 4 \| u_{x_1 x_1 x_1 x_2} \|_{L^2(\Omega)}^2 \right. \\
\left. + 6 \| u_{x_1 x_1 x_2 x_2} \|_{L^2(\Omega)}^2 + 4 \| u_{x_1 x_2 x_2 x_2} \|_{L^2(\Omega)}^2 \right)^{1/2}.
\]

3 Main theorem

We present a priori estimates replaced by \(f \) in the right-hand side of (2) and (3) instead of \(H^3 \) and \(H^4 \) semi-norms of \(u \), respectively.

Let \(D^1(-\Delta) \) and \(D^2(-\Delta) \subset H^1_0(\Omega) \) be the Banach spaces defined by

\[
D^1(-\Delta) := \{ u \in H^1_0(\Omega) : -\Delta u \in H^1_0(\Omega) \},
\]

\[
D^2(-\Delta) := \{ u \in H^1_0(\Omega) : -\Delta u \in H^1_0(\Omega) \cap H^2(\Omega) \},
\]

respectively. Note that \(D^n(-\Delta) \ (n \in \{1, 2\}) \) is the set of solutions of the Poisson equation (1a)-(1b).

Theorem 1. It is true that

\[
|u|_{H^1(\Omega)} = \| \nabla (\Delta u) \|_{L^2(\Omega)^2}, \quad \forall u \in D^1(-\Delta) \cap H^2(\Omega). \tag{4}
\]
Remark 2. Using (4) and (2) we obtain an a priori error estimate with $O(h^2)$:
\[
\| u - u_h \|_{H_0^1(\Omega)} \leq C_2 h^2 \| f \|_{H_0^1(\Omega)}.
\]

Theorem 2. It is true that
\[
|u|_{H^4(\Omega)} = \| \Delta^2 u \|_{L^2(\Omega)}, \quad \forall u \in D^2(-\Delta) \cap H^4(\Omega).
\]

Remark 3. Using (5) and (3) we obtain an a priori error estimate with $O(h^3)$:
\[
\| u - u_h \|_{H_0^1(\Omega)} \leq C_3 h^3 \| \Delta f \|_{L^2(\Omega)}.
\]

Acknowledgments. This work was supported by the Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 15H03637, 15K05012) and supported by Program for Leading Graduate Schools “Training Program of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society.”

References